Bivariate Data Analysis using Linear Regression and Genstat

1. Open Genstat
2. Open the file metacarpal

3. To draw a scatterplot of the data, use the pull-down Graphics menu and select 2D Scatter Plot
4. Fill in as shown by double clicking on the variables and then clicking Run.

5. You should now get the graph! A right click will give the option to copy or click on and the graph can be pasted into a Word document.

6. To return to the Spreadsheet, click on the icon along the task bar at the bottom of the screen.

7. To perform the linear regression, use the Stats menu and select Linear Regression.
8. Fill in the dialogue box as shown, double clicking on the variables to select them. Click on Options to select further options and select by clicking. Fill in as shown.

9. Click OK and then Run.

10. You will now get a graph of the fitted model, the residual graphs as well as the linear regression. Use the in the graph window to move between graphs.

To find the output, click on the and under the Window menu, select Output. This can be copied into Word, though you will need to select the regression output you require first.

The model is stature = 17 x metacarpal bone length + 94.4 cm
The graphs can be edited to remove the confidence levels if desired. In the Graph window, choose Edit and then Edit Graph. You now choose Edit and then Graph Options. By choosing the two Data set
- Lower v indexvar
- Upper v indexvar
and clicking off Display data set you remove the lines.

Predictions

You can use your model to predict the height when given the length of the metacarpal bone for other skeletons. Using the Genstat Calculator by typing in as shown you should get (17*4.1)+94.4 and selecting print in Output you will get 164.1 in the Output.

Correlations

To find r under the Stats menu choose correlations and then correlation coefficient
1. Click on \(\rightarrow \) to put your variables in the Data column, tick on Correlations to ensure that you get the correlations
2. Click Run

Note: Genstat gave you the adjusted \(R^2 \) earlier, if you want the normal \(R^2 \), square the \(r \) value, or take the regression ss and divide by the total ss (347.3 \(\div \) 474 for the metacarpal example)

Correlations between parameter estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ref correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.000</td>
</tr>
<tr>
<td>metacarpal_bone_length_in_cm</td>
<td>-0.997 1.000</td>
</tr>
</tbody>
</table>

Genstat will printed out all the predicted values if you ticked Fitted Values when you did the Linear regression.

Genstat would have also printed out the standardized residuals if you ticked Fitted Values.
Fitted values and residuals

<table>
<thead>
<tr>
<th>Unit</th>
<th>Response</th>
<th>Fitted value</th>
<th>residual</th>
<th>Leverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.00</td>
<td>170.91</td>
<td>0.02</td>
<td>0.11</td>
</tr>
<tr>
<td>2</td>
<td>178.00</td>
<td>181.11</td>
<td>-0.92</td>
<td>0.37</td>
</tr>
<tr>
<td>3</td>
<td>157.00</td>
<td>160.71</td>
<td>-1.18</td>
<td>0.46</td>
</tr>
<tr>
<td>4</td>
<td>163.00</td>
<td>164.11</td>
<td>-0.31</td>
<td>0.28</td>
</tr>
<tr>
<td>5</td>
<td>172.00</td>
<td>176.01</td>
<td>-1.03</td>
<td>0.17</td>
</tr>
<tr>
<td>6</td>
<td>183.00</td>
<td>177.71</td>
<td>1.40</td>
<td>0.22</td>
</tr>
<tr>
<td>7</td>
<td>173.00</td>
<td>172.61</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>8</td>
<td>175.00</td>
<td>167.51</td>
<td>1.92</td>
<td>0.16</td>
</tr>
<tr>
<td>9</td>
<td>173.00</td>
<td>174.31</td>
<td>-0.33</td>
<td>0.13</td>
</tr>
<tr>
<td>Mean</td>
<td>171.67</td>
<td>171.67</td>
<td>-0.04</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Piecewise Functions

If you think your model would be better as two straight lines rather than one (or even three lines!) you can fit a piecewise model. Genstat will fit the model and even find the best breakpoint (where to split the model) for you.

1. Open the file mens 1500m
2. Choose **Stats** menu then **Linear Regression** then change the regression type to **Splitline regression**
3. Choose the options shown

You can see that there is a split in the data around 1910. Looking at the output you can see that it is at 1906.

Estimates of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>estimate</th>
<th>s.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakpoint_X</td>
<td>1906.07</td>
<td>1.26</td>
</tr>
</tbody>
</table>
To split the data and graph both models and get the equation for both you will need to divide the data into two groups.

4. Create a factor column and call it factor

5. Go to Spread then Restrict/Filter then By value: - here the data is restricted to all the values where the year is less than 1906

6. From the Spread menu, choose Calculate, then Fill and fill with the value 1 as shown but make sure you tick Ignore restricted/filtered rows as shown

7. Remove the filter with

8. Now you can use Linear Regression but use Linear Regression with groups
Summary of analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>s.s.</th>
<th>m.s.</th>
<th>v.r.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>3</td>
<td>371.3</td>
<td>123.77</td>
<td>6.03</td>
</tr>
<tr>
<td>Residual</td>
<td>5</td>
<td>102.7</td>
<td>20.54</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>474.0</td>
<td>59.25</td>
<td></td>
</tr>
</tbody>
</table>

Percentage variance accounted for 65.3
Standard error of observations is estimated to be 4.53.

Estimates of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>estimate</th>
<th>s.e.</th>
<th>t(5)</th>
<th>t pr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>factor 1</td>
<td>53.1</td>
<td>42.6</td>
<td>1.25</td>
<td>0.268</td>
</tr>
<tr>
<td>factor 2</td>
<td>103.5</td>
<td>56.8</td>
<td>1.82</td>
<td>0.128</td>
</tr>
<tr>
<td>metacarpal_bone_length_in_cm.factor 1</td>
<td>27.0</td>
<td>10.1</td>
<td>2.66</td>
<td>0.045</td>
</tr>
<tr>
<td>metacarpal_bone_length_in_cm.factor 2</td>
<td>15.0</td>
<td>11.8</td>
<td>1.27</td>
<td>0.259</td>
</tr>
</tbody>
</table>

While you don’t have an r value, you do have the t probabilities and as you can see they are higher than 0.05 and before they were only 0.03 so as mentioned earlier, this data set would be better not as a piecewise model!

More than one pair of variables in your data set

When you have more than one pair of data variables, you can plot all the possible data pair combinations by using Graphics and then Scatterplot Matrix and choosing all the data variables – this now gives you a plot like the one below. Here there are 3 pairs of variables, and the six combinations are plotted – the first row gives X on the x axis and concentration (middle graph) on the y axis and diameter (right graph) on the y axis. The second row has concentration on the x axis with X(left) and diameter (right) on the x axis. The third row has diameter on the x axis and X (left) and concentration (right) on the y axis. This data is from the file cell (but the second column has been deleted – it had 2 values 1 or 2 for glucose)
Non-Linear Models
You can fit polynomial, exponential, power, square root or piecewise models using Genstat. Once the regression has been fitted, you can compare the scatterplot, the residual analysis, the R/R² value as well and the p-value of the F statistic and the significance of the t-test for βj value in your model to decide which of the models appears to be the best.

If a more complicated model is only slightly better than another, it is usual to use the more simple model as its interpretation is easier.

Remember to consider also, the number of data points you have - at least 30 is considered enough for a reliable model.

Exponential Function
\[y = Ae^{kx} \]
(also can be written \(y = Ak^x \))
e.g. \(y = 2e^{3x} \) or \(y = 3^x \)

Where A is the original amount, r = rate or growth factor, x is time
The file trees has the cross section of a tree trunk. In when the recording of the cross sections began, the tree which had a cross section of 2cm.
Before you can use linear regression you need to transform the data so a linear relationship is present. can use Natural logarithms to do this.

8. Open the file trees. Note: X is the number of years recording began i.e. 1990.
9. Use the calculator as before
10. This time we are going to save the results in the spreadsheet.
 a. Enter in a name for the column of the spreadsheet
 b. Click on Functions
 c. Use the arrow to select Natural logarithm
 d. Double Click on X
 e. Click Ok Twice

You will have got a warning message and you can see the is highlighted and an * put in Row 1.
Checking the output, there is a warning message

Warning 2, code CA 7, statement 1 on line 66

Command: CALCULATE log_X=LOG(X)
Invalid value for argument of function.
The first argument of the LOG function in unit 1 has the value
As you would expect!
Repeat the transformation for the radius, ensuring you have a new name for the column where the results are to be displayed.

a. X explanatory, Radius Response
b. X explanatory, log (Radius) Response
c. log (X) explanatory, log (Radius) Response

The second graph is obviously the best – it’s the straightest, also notice the * in the log X column, that’s because you cannot log 0, so you cannot use log X

to create a model

This means that an **exponential model** is possibly a very suitable model.

Now you can perform Linear Regression using X as the explanatory variable and log Radius as Response variable as you can see there is a linear relation between the two.
Regression analysis

Response variate: log_rad
Fitted terms: Constant, X

Summary of analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>s.s.</th>
<th>m.s.</th>
<th>v.r.</th>
<th>F pr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>3.655284175</td>
<td>3.655E+00</td>
<td>16215141.71</td>
<td><.001</td>
</tr>
<tr>
<td>Residual</td>
<td>9</td>
<td>0.000002029</td>
<td>2.254E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>3.655286204</td>
<td>3.655E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage variance accounted for 100.0
Standard error of observations is estimated to be 0.000475.

Estimates of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>estimate</th>
<th>s.e.</th>
<th>t(9)</th>
<th>t pr.</th>
<th>lower 95%</th>
<th>upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.693528</td>
<td>0.000268</td>
<td>2589.56</td>
<td><.001</td>
<td>0.6929</td>
<td>0.6941</td>
</tr>
<tr>
<td>X</td>
<td>0.1822906</td>
<td>0.0000453</td>
<td>4026.80</td>
<td><.001</td>
<td>0.1822</td>
<td>0.1824</td>
</tr>
</tbody>
</table>

Therefore the linear relationship is: \(\text{Ln(radius)} = 0.1823 \times X + 0.6935 \)

Transforming this
\[e^{\text{Ln(radius)}} = e^{0.1823 \times X + 0.6935} = e^{0.1823 \times X} \times e^{0.6935} \]
\[\text{radius} = e^{0.6935} \times e^{0.1823 \times X} = 2.007 \times e^{0.1823X} \]

We can predict that after seven years, the radius of the tree will be
\[\text{Radius} = 2.007 \times e^{0.1823 \times 7} = 2.007 \times e^{12.701} \approx 7.168 \text{ (4sf)} \]

This compares well with the observed value of 7.17.

Power function

\(y = kx^a \) (e.g. \(y = 3x^2 \))

A certain type of glue hardener needs a certain amount of hardener added to set. The amount of hardener added affects the time taken for the glue to set, as shown in the table above.
While this file is available as glue, this we will enter the data in manually. You may wish to clear the data from last file first (Data, Clear All data)

e. Click on , you will need 8 rows 2 columns

f. Type in the hardener values in the first column and the time taken values in second column

g. Right click in the first column and choose Column Attribute.

h. Fill in the dialogue box as shown below. This is where you can also change the type of data by using Convert if it is the wrong type (variates when is should be date etc.) and where you can change the Date Type. You can alter the width here or by manually dragging in the spreadsheet window.

- Repeat for the other column, naming it Time_taken - min

Now you can transform the data as before. (Remember to use Natural Logarithms) and graph the three possible models

- Explanatory : Hardener, Response: Time taken
- Explanatory : Hardener, Response: log(Time taken)
- Explanatory : log(Hardener), Response: log(Time taken)

<table>
<thead>
<tr>
<th>Row</th>
<th>Hardener</th>
<th>Time_taken</th>
<th>log_Hardener</th>
<th>log_Time_taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>8.8</td>
<td>1.60944</td>
<td>2.17774</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>3.1</td>
<td>2.30259</td>
<td>1.1314</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>1.7</td>
<td>2.70056</td>
<td>0.530628</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>1.1</td>
<td>2.99573</td>
<td>0.0953102</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>0.8</td>
<td>3.21888</td>
<td>-0.223144</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>0.6</td>
<td>3.4012</td>
<td>-0.510826</td>
</tr>
</tbody>
</table>

Now graph the three possible models.
The last graph looks the most linear, so perform Linear Regression on Explanatory : log(Hardener), Response: log(Time taken) to find the equation for the power model.

\[
\ln(\text{hardener}) = -1.48\ln(\text{time}) + 4.55
\]

We can test this model to by substituting in a hardener value e.g. 35 and checking the time taken.

\[
\text{Time} = 94.6 (35)^{-1.48} = 0.49 \text{ very close to the observed 0.5}
\]

Now we can use this to predict the time taken for 50g

\[
\text{Time} = 99.48 (50)^{1.5} = 0.28 \text{ minutes}
\]

Polynomial

You may fit any **polynomial** in Genstat.

- Choose Linear Regression but this time change the Regression to Polynomial Regression, then choose whether you want a quadratic, cubuc etc, you will get a similar output to before.
Fitted terms: Constant + metacarpal_bone_I_length_in_cm
Submodels: POL(metacarpal_bone_I_length_in_cm; 2)

Summary of analysis

- Source d.f. s.s. m.s. v.r. F pr.
 Regression 2 370.4 185.20 10.73 0.010
 Residual 6 103.6 17.27
 Total 8 474.0 59.25

Percentage variance accounted for 70.9
Standard error of observations is estimated to be 4.16.

Message: the following units have high leverage.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Response</th>
<th>Leverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>178.00</td>
<td>0.73</td>
</tr>
<tr>
<td>3</td>
<td>157.00</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Time Series using Genstat
Open the file Auselec
- From the Stats menu choose Time Series and then Moving Average
 - the series will be kwh
 - Length will be 4 as quarterly data
 - Method will be centred
 - Type in a name for the column
 - Tick trim transients
 - Click Display in Spreadsheet

To find the Individual seasonal value, use the calculator

To find the average seasonal value, the Quarter column needs to be a factor. This is indicated by the ! in front. If it is not a factor, right click and select Convert to Factor.
Now to get the average seasonal effect, choose **Calculate** from the **Spread** menu and then **Summary Statistics**. Remember to click **Merge**!

You can now also find the seasonally adjusted data using the **Calculator**. To get the trend line and its equation you need to perform **Linear Regression**. You need to know how many time periods have passed. You can insert a new column (Choose **Insert, Column** from the **Spread** menu) To fill it easily choose **Calculate** then **Fill** from the **Spread** menu

Now run the **Linear Regression**
To save the fitted values, you click on the Save option when you run the Linear Regression

Estimates of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>estimate</th>
<th>s.e.</th>
<th>t(76)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>16557.</td>
<td>168.</td>
<td>98.40</td>
</tr>
<tr>
<td>period</td>
<td>315.57</td>
<td>3.56</td>
<td>88.55</td>
</tr>
</tbody>
</table>

So the model is kwh = 315.57 * quarter period + 16557

To graph the raw data, the trend and the smoothed data on the same graph, you choose Line 2D from the Graphics Menu. Then you need to choose a Multiple Y graph.

If you prefer a graph with the dates along the bottom graph just select month rather than period for the X variate, however you will need to edit the graph to change the axis to read in dates...

Choose Edit then Edit graph as you did earlier and change the x-axis as shown.
To make predictions, you can just use the formula for the trend line and then add on the average seasonal effect.

You can use the computer to work out the moving means (or medians) and produce a graph with a trendline and find the equation of the trend line.