

Michelle Dalrymple

Use Statistical methods to make a formal inference

The end of the high school journey...

Final step in the sample -> population inference journey for students

Sample-to-population inference progressions across senior curriculum

*SAMPLE-TO-POPULATION INFERENCE: The process of drawing conclusions about population parameters based on a sample taken from the population.

Standard	91035 (1.10): Multivariate data	91264 (2.9): Use statistical methods to make an inference	91582 (3.10): Use statistical methods to make a formal inference
CL	Level 5 & Level 6	Level 7	Level 8
Inferential ideas	"Making the call" with L5 or L6 guidelines (based on position of medians and spread)	Using informal confidence interval for population medians (based on sample size & IQR)	Using a formal confidence interval to make an appropriate formal inference (based on the resampling distribution of the statistic of interest – bootstrap confidence interval)
Key ideas Clear links between PROBLEM → PLAN → CONCLUSION & the situation should be evident throughout	 Comparing overall distributions Understanding of the measures (eg: IQR is a measure of how spread out the middle 50% is) Some appreciation of sampling variability (sample size; if another sample was taken it might look like) 	 Comparing medians Selecting a random sample in an appropriate way Understanding sampling variability (impact of sample size and population spread) 	 Researching context (relating the context-research-findings to what is seen in the data and to any conclusions made – the "so-what?" factor) Working with the difference between means as well as medians
From Senior Secondary guides	 S6-1:communicating features in context 	 S7-1: Uses relevant contextual knowledge when communicating findings 	 \$8-1: Uses informed contextual knowledge to support explanations and to communicate findings

Use statistical methods to make a formal inference

- Researching context
 - relating the contextresearch-findings to what is seen in the data and to any conclusions made
 - the "so-what?" factor

- Analysis tool Bootstrap confidence intervals
 - Working with the difference between means as well as medians

Teaching...my plan

- Recap key ideas from Level 7
- Teach new method of analysis (bootstrapping)
- Then drop into PPDAC framework linking to "informed contextual knowledge"

Summary data set

• Fraggle rock clip http://www.youtube.com/watch?v=l_zsz_MIVvI

Doozers "New" data set to...

- Recap L7 ideas
- Introduce bootstrap distribution and confidence intervals

Doozers

Mean height of Doozers at Fraggle rock is <u>150mm</u> (standard deviation of <u>5mm</u>)

 Sketch the height distribution of the population of Doozers at Fraggle Rock

Height distribution of the **population** of Doozers at Fraggle Rock

Doozers

How tall is **your** doozer?

- Casio Graphics calculator: RandNorm#(5, 150)
- Draw your doozer
- Tell us about your doozer

... in teaching world

 • We actually know the population distribution of Doozer heights
 → we are using this data set as a <u>teaching example</u>.

"I wonder what is the mean height of Doozers in Fraggle Rock?"

- How would you have gone about answering this last year?
- KEY IDEAS FROM L7
- Random sample
- Informal confidence interval
 - Why we use an interval estimate
- Sampling variation

Sampling distribution

"I wonder what is the mean height of Doozers in Fraggle Rock?"

 Bootstrap method for constructing confidence intervals

 Random sample of size 25*

* or appropriate size for your class

Hands on -> technology

- Re-sample distribution
 - Students complete re-samples individually, then collate class results
- Decide from class results an interval for the population mean

- Complete same resampling using iNZight
 - Create
 bootstrapped
 re-sampling
 distribution
 - Confidence interval

Bootstrap distribution

Method works...

Check with a known population

Confidence interval coverage

Ę

Interpreting CI

- Sample \rightarrow population link strong
- Some level of uncertainty evident ("pretty sure")
- Population parameter identified
- Context clearly identified

Interpreting CI - activity

- Explain what is wrong with each of these conclusions?
- A. From my sample, I am pretty sure that the population height of doozers at fraggle rock is between 148.1mm and 151.6mm
- B. From my sample, it's a fairly safe bet that the mean height of doozers is between 148.1mm and 151.6 mm
- c. From my sample, I'm reasonably sure that the population mean for doozers at fraggle rock is between 148.1mm and 151.6mm.

The standard

91582 (3.10) Use Statistical methods to make a formal inference

Use Statistical methods to make a formal inference

- Hook needed to give motivation for context
- EG: SURF dataset → Alasdair Thompson and the "Sorry, but its true" interview

This is to get students to start thinking about the context, and to allow them to go and research into the situation to give purpose to their investigation

Captain Hook

Problem

- Students research into situation to give purpose to investigation and help them choose what variables to investigate
- Clear investigative question
- Prediction of what students expect to see in their analysis and why (based on their research)

Problem

A good comparison question should include

- Variable that is being examined
- <u>Groups</u> that are being compared
- <u>Population</u> that inferences are being made about
- <u>Statistic</u> that is being estimated
- I wonder what the difference in mean heights is between Doozers from Fraggle Rock and Doozers from Raggle Frock.

Data

• Given multivariate data set (sample)

- Data set needs to be large enough to allow meaningful analysis
- Students may choose to re-categorise the data set in different ways from what is provided

Analysis

- Initial examination of sample data including basic graphs and summary statistics
- Bootstrap distribution for the difference in means/medians

Conclusion

- Interpretation of formal confidence interval
 - Sample \rightarrow population link strong
 - Some level of uncertainty evident ("pretty sure")
 - Population parameter identified

Conclusion

• Correct call, with justification

- Should reflect investigative question
- Call based on whether zero is contained within the interval or not
- Direction of evidence (if zero outside of interval)

Conclusion

- Linking back to the context and using initial research to help explain what this means
 - the "so what?" factor

New Zealand Crash Statistics NZQA Trial paper

http://nzta.govt.nz/about/advertising/drink-driving/legend.html

Ē

New Zealand Crash Statistics

Variable definitions:		
Variable	Description	
Gender	• Male	
	• Female	
Age	Age in years at time of crash	
Risk group	Highest risk age group 15 – 24 years (H)	
	Lowest risk age group 50–59 years (L)	
Licence type	Type of licence held at time of crash	
	Learners (L)	
	Restricted (R)	
	• Full (F)	
Crash severity	Minor injury crash (M)	
	Serious injury crash (S)	
Blood Alcohol	Recorded blood alcohol level recorded at time of crash (In milligrams of	
Level	alcohol per 100 millilitres of blood. Breath test results have been converted to a blood	
	equivalent)	
Distance driven	Estimated distance driven in the last week (in kilometres)	
Distance from home	Estimated distance away from home when crash occurred (in kilometres)	
Vehicle age	Age of vehicle involved in crash	
Insurance	Value of insurance claim	
payout		
Medical	Estimated medical costs as a result of the crash (total costs to date)	
expenses		
Time off work	Estimated number of days off work as a result of the crash (if applicable)	

Problem	• State the purpose of your investigation. Remember to explain why you are investigating this situation; give a brief background and hypothesis to be investigated. You are expected to do background research to understand the situation.
	Identify the variables you wish to investigate.
	Pose an appropriate comparison investigative question.
Analysis	 Select and use appropriate displays and statistical measures.
<u> </u>	Discuss and compare sample distributions
Conclusion	Make a formal statistical inference.
± `	 Conclude your investigation, reflecting on your hypothesis and justifying your formal inference <i>This may include:</i>
	 Discussing sampling variability, including the variability of estimates. Reflecting on the process you have used to make the formal inference
Remembe populations you write you	t: The quality of thinking demonstrated in your report and your ability to link the context and to the different components of the statistical enquiry cycle will determine your overall grade. As ur report, take care to link your discussion to the context and support your statements by statistical evidence.

Mathematics and Statistics 91582 (3.10) version 1:

Credits: 4

Use statistical methods to make a formal inference

Final grades will be decided using professional judgement based on a holistic examination of the evidence provided against the criteria in the AS.

	Achieve Use statistical methods to	Merit Use statistical methods to make a formal	Excellence Use statistical methods to make a formal inference, <u>with</u>
	make a formal inference	inference, with justification	statistical insight
	The student shows evidence of using each component of the statistical enquiry cycle to make an inference Examples of using each component of the statistical enquiry cycle appear below	The student makes an inference, showing evidence of linking components of the statistical enquiry cycle to the context, and/or populations and referring to evidence in support of statements made. Examples of linking components of the statistical enquiry cycle to the context and/or populations and referring to evidence such as sample statistics, data values, or features of visual displays in support of statements made appear below	The student makes an inference with statistical insight, showing evidence of integrating statistical and contextual knowledge throughout the statistical enquiry cycle. They may reflect on the process or consider other explanations. Examples of integrating statistical and contextual knowledge throughout the statistical enquiry cycle appear below
Judaement	Judgement: The report covers all the points below to the depth indicated by examples. Minor errors or omissions should not withhold awarding of the grade.	Judgement: The report covers all the points below to the depth indicated by examples. Understanding of key concepts (difference between sample statistics and population parameters; sampling variability; interpretation of the bootstrap confidence interval) should be evident. Minor errors or omissions should not withhold awarding of the grade.	Judgement: The report covers all the points below to the depth indicated by examples. Understanding of key concepts (difference between sample statistics and population parameters; sampling variability, interpretation of the bootstrap confidence interval) should be evident. The student has reflected on the process or has given explanations by considering, in context, the effect of aspects such as sample representativeness on the estimate. They have discussed aspects of the investigation in context, such as re-examining the data to show a different aspect, or justify a point being made. Minor errors or omissions should not withhold awarding of the grade.
Problem	Posing a comparison investigation question using a given multivariate data that clearly identifies the comparison and the population(s) Question should be about the difference in mediane or manne	Posing a comparison investigation question using a given multivariate data set including giving an explanation for the choice of variables for their investigation to pose an appropriate question and a <u>hypothesis about what they may find</u> Question should be about the difference in medians or means	Posing a comparison investigation question using a given multivariate data set including using research to develop the purpose for their investigation and using this contextual knowledge to pose a question. <u>The purpose should include a</u> <u>hypothesis and justification of the hypothesis</u> <i>Question should be about the difference in medians or means</i>

	Selecting and using appropriate	Selecting and using appropriate displays and	Selecting and using appropriate displays and summary statistics.
	displays and summary statistics.	summary statistics. This includes producing	This includes producing
	This includes producing	dot plots, box plots, summary statistics including	dot plots, box plots, summary statistics including difference
	dot plots, box plots, summary	difference between sample medians or means and	between sample medians or means and constructing a
	statistics including difference	constructing a bootstrapped confidence interval	bootstrapped confidence interval
	between sample medians or		
	means and constructing a	Discussing and comparing sample distributions by	Discussing and comparing sample distributions by seeking
	bootstrapped confidence	identifying and comparing features of them. This	explanations for features of the data identified in displays or
'si	interval	will involve comparing the shift/centre, spread,	summary statistics and considering the impact of these on the
÷		shape and unusual features with reference to	context or investigative question.
An	Discussing and comparing	features of displays and summary statistics AND	
	sample distributions by	links to context or investigative question.	
	identifying and comparing		
	features of them. This could		
	involve comparing the		
	shift/centre, spread, shape and		
	unusual features, using features		
	of the displays and the		
	summary statistics.		
	Making an appropriate formal	Making an appropriate formal statistical inference.	Making an appropriate formal statistical inference. For example:
	statistical inference: using the	For example: using the resampling (bootstrapping)	using the resampling (bootstrapping) method to construct a
	resampling (bootstrapping)	method to construct a confidence interval.	confidence interval.
5	method to construct a		
13 j	confidence interval.	Communicating findings clearly in a conclusion using	Communicating findings in a conclusion using the formal inference
5		the formal inference to answer the investigative	to answer the investigative question in context. This includes
5	Communicating findings clearly	question, justifying the call and making links to the	justifying the call AND linking back to the purpose of the
U	in a conclusion using the formal	context.	investigation; considering other explanations for the findings;
	inference to answer the		reflecting on the process (which may include discussion on
	investigative question.		sampling variability).

NOTES:

- Students are given a 'motivation' into the situation, but not too much of a direction in terms of hypothesis. It is expected that they then
 research themselves and develop their hypothesis and investigative question
- This research into the context will allow them to reflect on what they see with further depth
- · There should be an obvious connection between a student's question, analysis and conclusion; they should have answered their question
- · There should be population/sample understanding evident at all levels
- Understanding of sampling variability is implied through use of a confidence interval for population parameter.

New Zealand Crash Statistics

1	Achievement	Achievement with Merit	Achievement with Excellence
Use statistical methods to make a formal inference.		Use statistical methods to make a formal inference, with justification.	Use statistical methods to make a formal inference, with statistical insight.
Problem	Rupose with and sour serious l thas locked Q - compar	backgrand u ued nigh 1.sk > se lat subset of a ison, volues gps,	vell notwated vious cownisk dota) pap clear.
Analysis	data ouspi Overali - ci centres - di Sizi Micoldo 5070 Simila	er summery. ff in meds give with confectuor - acvig, sprec r vention + ve	olv (not discussed) on & relative J links giver ad ouscussed t eflecting to popul
Conclusion	Universal - 10 Shape - dis Correct call CIS interpret Call justifies Somple represe neldina	eted a with visual ref entertre more, t	to context offect to pepa. I to dall treconc - has to creat

Marking grid...

Student work

High not achieved - Becky

"The confidence interval shows that drivers of the higher risk age group tend to have a higher blood alcohol level at the time of crash, by somewhere between 0.0 and 24.0 milligrams of alcohol per 100 millilitres of blood."

Pg 5, Analysis, end of 1st paragraph

Cl interpretation

- Population unclear
- Population parameter not mentioned

Low level of analysis comments along with incorrect means HIGH NOT ACHIEVE rather than LOW ACHIEVE.

High achieved - Josh

"I would like to look at driver blood alcohol level and the severity of the crash. I wonder what the difference in median blood alcohol levels and severity of a car accident" Very top of Page 7 **Problem**

- Question about difference in medians
- Groups being compared not well defined

• Population not given

Sample → population link unclear in investigative question and Cl interpretation; starting to make contextual links and thinking about the "so what" but comments not strong hence HIGH ACHIEVE rather than LOW MERIT

High merit - Logan

Split of data a nice idea, but didn't really contribute much further depth to the analysis. Contextual links not strong, especially in analysis hence HIGH MERIT rather than LOW EXCELLENCE

High merit - Logan

"...Although I think that in the population there would be more points of higher blood alcohol levels. The few points from this sample that we have of under the blood alcohol limit show a relatively even spread which I think is reasonable for the population because these crashes may or may not have been caused by the alcohol in the persons system."

End first paragraph, page 10

Analysis

 ... data recategorised by legal BAL limit and described with link to population

Split of data a nice idea, but didn't really contribute much further depth to the analysis. Contextual links not strong, especially in analysis hence HIGH MERIT rather than LOW EXCELLENCE

"...I think this because the amount of advertisements we see in the media to do with stopping people from drink driving must mean that there is a high level of danger involved with drinking and driving. Otherwise the government would not spend money on trying to advertise this fact." Third paragraph, page 11

Problem

 ... justification of hypothesis opinion rather than referenced

Split of data a nice idea, but didn't really contribute much further depth to the analysis. Contextual links show depth of thinking, but some personal interpretation of information rather than based on referenced material hence LOW EXCELLENCE rather than HIGH EXCELLENCE.

"...This makes sense because it is possible to have a serious injury crash even without the influence of strong intoxication. Which is why the data for the serious injury crashes BAL's vary more." Middle 50% - Page 12 Analysis

 ... good contextual links and thinking evident about population but based on personal opinion rather than factually referenced

Split of data a nice idea, but didn't really contribute much further depth to the analysis. Contextual links show depth of thinking, but some personal interpretation of information rather than based on referenced material hence LOW EXCELLENCE rather than HIGH EXCELLENCE.

"....I believe that this makes sense in the context because in the minor injury crashes although there was alcohol in their blood that is not necessarily what caused the crash, and people with this much alcohol in their blood probably do get away with driving a lot of the time without a crash. It also makes sense in the case of the serious injury crashes being right skewed because not many people would consider driving with as much alcohol in their systems as the few outliers that did drive, resulting in a crash." Shape - Page 12 Analysis

 ... good contextual links and thinking evident about population but based on personal opinion rather than factually referenced

"One thing I am interested and surprised about though is the fact that as seeming by these results you get to a certain point when you are so intoxicated you are almost definitely going to have a serious injury crash. Once your BAL gets past about 220 it looks like if you crash you will almost definitely come under the serious injury crash category. This is interesting and I hope will convince some of the students I have done this investigation for to not, in the future, get drunk before driving."

Last paragraph, page 12

Conclusion

 ... comments relating findings back to context

Split of data a nice idea, but didn't really contribute much further depth to the analysis. Contextual links show depth of thinking, but some personal interpretation of information rather than based on referenced material hence LOW EXCELLENCE rather than HIGH EXCELLENCE.

New Zealand Crash Statistics Ministry of Transport Achievement with Excellence Achievement **Achievement with Merit** Use statistical methods to make a Use statistical methods to make a Use statistical methods to make a formal inference, with statistical formal inference. formal inference, with justification. insight. Rupose with backgrand well monwated Problem and sourced serious high risk > sciens coursk (has locked at subset of dota) Q - comparison, ubles gps, pop clear. data disprays V + by genal (not discussed) Analysis Overall - clear summary centres - diff in meds guen & relative size with contextual sents guer Middle 50% - acevig, spread ouscussed + Similar venintion + netlecting to pern Conclusion Shape - discussed + reflected to pero ()- Correct call CIS interpreted Call justified with visual ref to data treformer somple representative ness, I have to cleak Aldia

High excellence -Troy

My best paper 😊

Michelle Dalrymple

Use Statistical methods to make a formal inference

The end of the high school journey...