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Hypothesis testing reasoning is recognized as a difficult area for students. Changing to a new 
paradigm for learning inference through computer intensive methods rather than mathematical 
methods is a pathway that may be more successful. To explore ways to improve students’ 
inferential reasoning at the Year 13 (last year of school) and Stage One university levels, our 
research group developed new learning trajectories and dynamic visualizations for the 
randomization method. In this paper we report on the findings from a pilot study including student 
learning outcomes and on the modifications we intend to make before the main study. We discuss 
how the randomization method using dynamic visualizations clarifies concepts underpinning 
inferential reasoning and why the nature of the argument still remains a challenge. 
 
INTRODUCTION  

For many years, the backbone of statistical inference in most undergraduate introductory 
statistics courses has comprised the normal distribution, the Central Limit Theorem and sampling 
distribution of estimates. However, research evidence suggests that the theoretical and 
mathematical procedures involved in the inferential process have provided a barrier to student 
understanding. It has long been noted that students have difficulty in following the unfamiliar logic 
associated with statistical reasoning based on the logic of inference for normal-based theory. The 
majority of students who come through traditional introductory courses in statistics fail to gain a 
true understanding of statistical inference (Jones, Lipson, & Phillips, 1994; delMas, Garfield, & 
Chance, 1999; Saldanha & Thompson, 2002). In fact, many who teach these courses struggle 
themselves to understand fully the intricacies involved in the process of statistical inference 
(Thompson, Liu, & Saldanha, 2007). In today’s world, with advances in computing power, we no 
longer need to rely on normal-based theory to develop students’ understanding of statistical 
inference. With this in mind, many statistics education researchers (e.g., Cobb, 2007) believe that 
the way forward is to change the way in which the statistical reasoning process is taught.  

Motivated by Cobb’s (2007) challenge to place the logic of inference at the center of the 
introductory statistics curriculum, and aligned with recent moves in statistical practice (Hesterberg, 
Moore, Monaghan, Clipson, & Epstein, 2009), we have taken steps to introduce the randomization 
and bootstrapping methods as core parts of our curriculum and to develop new visual thinking tools 
for students (Pfannkuch, et al., 2011). The appeal of both the randomization and the bootstrapping 
methods is that they are logical, accessible, and conveniently lend themselves to visual processes, 
which we conjecture may assist students with their understanding of statistical inference. They also 
do away with the need for distributional assumptions, and can be applied to many different 
situations. In this paper, we focus on our learning trajectory for the randomization method and we 
present pilot study findings about student learning outcomes.  
 
LITERATURE REVIEW 

Statistical inference is the term given to procedures that are used to draw conclusions about 
the world based on data. The three philosophies that underlie statistical inference are Bayesian, 
Neyman-Pearson and Fisherian. The Bayesian approach has as its core the concept of subjective 
probabilities and personal decision-making, and will not be dealt with in this paper. Both the 
Neyman-Pearson and the Fisherian approaches utilise objective measures of probability in order to 
come to conclusions. In simple terms, the Fisherian framework involves the setting up of a null 
hypothesis, usually one of no effect, with evidence being gathered against this null model. The 
Neyman-Pearson decision theoretic framework involves the setting up of competing hypotheses; 
the null hypothesis, and the research (or alternative) hypothesis. A decision is then made, based on 
the observed data, as to which hypothesis to accept (Rossman, 2008). One consequence of this 
difference is that there is only one type of error defined in the Fisherian approach; rejecting the null 
hypothesis when it is true (i.e. a Type I error), while there are two errors associated with the 



Neyman-Pearson approach: a Type I error, and rejecting the alternative hypothesis when it is true 
(i.e. a Type II error) (Gigerenzer, 1993). For many, having two approaches to hypothesis testing 
introduces problems in deciding which method to adopt. One result is that many researchers “most 
commonly adopt a hybrid approach, combining aspects of both Fisherian inference and Neyman-
Pearson decision-making to statistical hypothesis testing” (Quinn & Keough, 2001, p. 39).  

Hypothesis testing, regardless of whether it is set within the confines of the Fisherian 
framework or the Neyman-Pearson decision theoretic framework or a combination of the two, is 
one of the most difficult topics for students and researchers to understand (Jones, Lipson, & 
Phillips, 1994). Many researchers (e.g., Carver, 1978; Cohen, 1994; Daniel, 1997; Falk & 
Greenbaum, 1995; Haller & Krauss, 2002; Hurlbert & Lombardi, 2009; Johnson, 1999; Mulaik, 
Raju, & Harshman, 1997;  Nickerson, 2004; Schmidt, 1996) have documented persistent 
misconceptions related to hypothesis testing. These misconceptions include, but are not limited to: 

 regarding a p-value as the probability that the research results are due to chance; 
 considering a p-value as the probability that the null hypothesis is true, given the data 

rather than the probability of the data, assuming that the null hypothesis is true; 
 believing that the size of a p-value is an indicator of the size of any difference or 

relationship; 
 concluding that ruling out a null hypothesis at a particular level of significance, say , 

means that the research hypothesis has a probability of 1- of being true; 
 interpreting a statistically significant result as practically important; 
 accepting the null hypothesis if the p-value is considered to be ‘large’. 

Acceptance of the null hypothesis on the basis of a large p-value is a logical misconception, and 
arises from a misapplication of deductive syllogistic reasoning (Cohen, 1994). Most people are not 
attuned to thinking and reasoning probabilistically, and therefore apply a deterministic form of 
reasoning to such situations (Pfannkuch, et al., 2011). Liu and Thompson (2009, p. 127), through 
an analysis of some teachers’ thought processes, believed that the conceptual obstacles were 
“rooted in their non-stochastic conceptions of probability and in their lack of understanding of the 
logic of indirect argument.” That is, the teachers did not have a conception of distribution from 
which they could determine the unusualness of an observation, and they had a hidden belief that 
“rejecting a null hypothesis means to prove it wrong” (p. 142). Other researchers have also noted 
the difficulties associated with the indirect argument used in hypothesis testing (e.g., Nickerson, 
2004; Rossman, 2008). In addition to these misconceptions is the fact that classical presentation 
and handling of statistical inference in the undergraduate curriculum relies on mathematical theory. 
Concepts associated with the development of a sampling distribution for any test statistic create 
obstacles in the path of understanding for all but the most mathematically inclined students 
(Chance, delMas, & Garfield, 2005; Rubin, Bruce, & Tenney, 1990). 

After 20 years of attempting to improve students’ hypothesis testing reasoning with little 
progress (Meletiou-Mavrotheris, Lee, & Fouladi, 2007) there appears to be a consensus that a new 
paradigm should be considered. The new learning emphasis should be on the reasoning and logic 
underpinning inference or hypothesis testing and that the mathematical procedures and 
manipulation of symbols of normal-based hypothesis testing should be replaced with the 
randomization method, which seems to be more conceptually accessible both visually and verbally 
(Cobb, 2007; Gould, Davis, Patel, & Esfandiari, 2010; Rossman, Chance, Cobb, & Holcomb, 2008; 
Tintle, VandenStoep, Holmes, Quisenberry, & Swanson, 2011). 

Randomization (or permutation) tests have a long history, largely attributable to works by 
Fisher (1925) and Pitman (1937).  The main premise of the randomization method is that the exact 
distribution of any test statistic specified under a null hypothesis can be obtained by reshuffling the 
original data many times. This is in contrast to the majority of other statistical tests which rely on 
asymptotic approximations which tend towards an exact solution only when sample sizes grow 
infinitely large. Fisher’s exact test, used when analysing categorical data in contingency tables, is 
an example of a randomization (or exact) test, since the distribution of the test statistic is exactly 
hypergeometric if the marginal counts of the contingency table are fixed (Agresti, 1992). Karl 
Pearson’s chi-square test provides an approximation to Fisher’s exact test, although it will be 
inadequate if the sample size is small, or if cell counts under the null hypothesis are low. The 



beauty of Fisher’s exact test is that it can be performed quite easily when dealing with a two-by-
two table, with computer algorithms capable of dealing with data having more than two categories. 
Pitman demonstrated that randomization tests could be extended beyond the categorical data 
example originally described by Fisher, with other statisticians following his lead (Ludbrook & 
Dudley, 1998). 

In recent exploratory research using the randomization method the setting up of hypotheses 
and the language of hypothesis testing is being retained and the method is being applied to both 
comparative observational and experimental studies. Preliminary results from the research show 
promise for the randomization method with Tintle et al. (2011) and Tintle, Topliff, Vanderstoep, 
Holmes, & Swanson (2012) reporting that students learned and retained significantly more about 
statistical inference using the randomization method while Gould et al. (2010) cautioned that new 
reasoning misconceptions could appear such as students believing the re-randomization distribution 
was the observed data distribution. 

The randomization method, moreover, can be mediated through visual representations, 
which allow concepts to become more accessible to students. According to Clark and Paivio 
(1991), student understanding can be enhanced by the addition of visual representations and that 
encouraging students to generate mental images improves their learning. A central contribution of 
technology to student learning is that it enables students to link multiple representations − visual, 
symbolic, and numeric − and it facilitates understanding through promoting a visualization 
approach to learning (Sacristan, Calder, Rojano, Santos-Trigo, Friedlander, & Meissner, 2010). 
Several researchers have found that the introduction of technology, through computer simulation 
activities, has enhanced students’ understanding, although the improvement was modest (Hodgson, 
1996; delMas, Garfield, & Chance, 1999). Dynamic software can allow students to analyze directly 
the behavior of a phenomenon, to visualize statistical processes in ways that were not previously 
possible such as viewing a process as it develops rather than analyzing it from the end result. 
Exposure to such processes “can help develop the abilities and intuitive thinking that can enhance 
powerful mental conceptualizations” (Sacristan et al., 2010). Such representational infrastructure 
allows access to statistical concepts previously considered too advanced for students, as mastery of 
algebraic representations is not a prerequisite. The computer is able to take on the lower level tasks, 
such as performing many calculations, whilst the student can attend to the higher level tasks of 
applying the logic of statistical inference to the problem at hand (Jones, Lipson, & Phillips, 1994). 
Hence to obtain the full potential for learning inferential reasoning via the randomization method 
the teaching approach should incorporate dynamic visualizations. The role of hands-on activities as 
a tool to assist in the development of the inferential argument is also a major consideration. Some 
researchers argue that technology-driven simulations are more effective when presented in 
conjunction with appropriate practical activities (delMas, Garfield, & Chance, 1999; Lunsford, 
Rowell, & Goodson-Espy, 2006; Hesterberg, 2006; Pfaff & Weinberg, 2009; Seier, 2010). 
 
OUR RESEARCH 

Reflecting on the research literature and the requirements and constraints of our curricula 
we have chosen a different learning pathway from other researchers for beginning students. We 
decided not to use hypothesis testing structures and language; instead we generated a more natural 
form of argumentation based on the Fisherian framework. We limited the learning situations to 
comparative experiments in order to link how the randomization method mimics the data 
production process, which in turn determines the type of inference that can be drawn, that is, causal 
(Cobb, 2007). We are not using sample and population ideas for experiments, as is the case in 
traditional normal-based methods, and a matter which Cobb (2007) described as sleight of hand 
because in reality experiments do not take random samples from populations. We developed novel 
free dynamic visualization software for the randomization method to use as both a teaching and 
analysis tool. Our learning pathway is premised on the fact that for Year 13 (final school year) 
students it is sufficient for the analyses they are required to perform and that our Stage One 
students, because of client department demands, still need to do normal-based inference. In time at 
the university level we hope to develop a fully-fledged randomization and bootstrapping 
curriculum. Our research question for the pilot study, the focus of this paper, is: what problems are 



inherent in the randomization method and our learning trajectories based on an analysis of 
students’ learning and reasoning? 

 
METHOD 

A collaborative research project team of 33 members is involved in the development of 
these new innovative approaches to teaching statistical inference. The team consists of two 
education researchers, two resource developers, a statistical software conceptual developer, eight 
university lecturers, fourteen secondary school teachers, five professional development facilitators, 
and one international advisor. Using design research principles (Hjalmarson & Lesh, 2008), the 
development process involves two research cycles with four phases: (1) from a problematic 
situation, understanding and defining the conceptual foundations of inference; (2) development of 
new resource materials and dynamic visualizations; (3) implementation with Year 13 and Stage 
One university statistics students; and (4) retrospective analysis followed by modification of 
teaching materials. The focus of design research is to support and engineer new types of reasoning 
and thinking in response to problematic situations. As well as being pragmatic through producing 
an educational product that can be used by teachers, design research can also lead to new 
educational theories and areas of research (Bakker, 2004). 

In the first research cycle a pilot study was conducted with ten students, five from year 13 
and five from university. All of the year 13 students had good grades at this level. Of the five 
university undergraduates, one student had studied a variety of stage 3 level statistics papers and 
two had taken our traditional introductory statistics paper. The remaining two undergraduate pilot 
study students had not taken any statistics papers while at university. One had good grades at the 
year 13 school level and one had bare passes at the year 13 school level. A one-day teaching 
session was conducted with half of the day devoted to the randomization method, and the other half 
to the bootstrapping method. Using a mixed methods approach, data collected for this pilot study 
were: student pre and post-tests and interviews, video of teaching implementation, and reflections 
and observations of the project team. A thematic qualitative data analysis using NVivo 9 software 
(QSR International, 2010) was conducted on the student interviews (Braun & Clarke, 2006), while 
numbers of students who responded to multi-choice and true/false questions were recorded. In the 
second research cycle data will be collected from about 3000 students. 
 
PILOT STUDY DESCRIPTION AND RESULTS 

The purpose of the pilot study was to detect problems in the pre and post-tests, learning 
trajectories and software. We will describe some of the issues that arose in the pilot study pre-test, 
during the implementation of the teaching unit, and in the post-test and post-task. For the 
implementation of the teaching unit we will elaborate on some of the learning experiences and 
language we used. 
 
Pilot study pre-test 

Prior to the teaching session, the students completed the pre-test and were then interviewed 
in order to probe their reasoning behind their responses. The randomization section of the pre-test 
described a Fish Oil and Blood Pressure study (Knapp & FitzGerald, 1989) investigating whether a 
fish oil diet produced greater reductions in blood pressure than a regular oil diet. The Fish Oil and 
Blood Pressure study participants, 14 male volunteers with high blood pressure, were randomly 
assigned to the treatment group (fish oil diet) and the control group (regular oil diet). Data were 
provided numerically and graphically with two questions, one probing the students’ understanding 
of random assignment and another aimed at eliciting the students’ initial response in providing two 
main possible explanations for the observed difference in blood pressure reductions between the 
two groups (Figure 1). 
 



 

 

Figure 1: Part of one pilot study pre-test question, Question 8 
 
Question 8 in Figure 1 was adapted from the Comprehensive Assessment of Outcomes in a 

First Statistics Course (CAOS) (delMas, Garfield, Ooms, & Chance, 2007). In a large scale pre and 
post-test situation, delMas et al. observed poor performance in understanding the purpose of 
random assignment with 8.5% and 12.3% answering correctly in the pre and post-tests 
respectively. In our pilot study pre-test, three students selected the correct response, namely to 
produce treatment groups with similar characteristics. Another three selected the response to 
increase the accuracy of the research results. However, upon questioning in the interview session, 
all of these students talked about avoiding bias and wanting comparisons to be fair. Even though 
they selected an incorrect response, they used words and reasoning that indicated an appreciation 
behind the reason for random allocation to groups with statements such as: 

S1: … so you didn’t take the seven youngest to do the fish oil or … seven of the same 
ethnic group 

Therefore the problem seems to be their interpretation of the language of the multi-choice options 
rather than their reasoning. Several students, however, were confused between random assignment 
and random selection. Three selected the option to ensure that all male participants with high 
blood pressure had an equal chance of being selected for the study with one student stating:  

S2: … when they have all the people who volunteered with high blood pressure, they 
chose a random 14 

Such a statement could be true but again it seems that knowing and understanding the language of 
statisticians is very important. 

For the next question about two main possible explanations for the observed difference in 
blood pressure reduction between the two groups, we were interested to find out if the students 
would suggest chance as a possible explanation. All but two of the pilot study students were able to 
state that one possible explanation for the observed difference in blood pressure reduction was that 
the fish oil treatment was effective. Attempts at formulating a second explanation ranged from 
statements about the fish oil study participants knowing they were being treated with fish oil and 
therefore eating more healthily, psychological effects or biological properties having an impact on 
blood pressure, and some partial chance ideas about who just happened to be in which group. For 
example: 

S3: The participants in the fish oil group had a lifestyle better suited to reducing blood 
pressure than the regular oil group 

Results from the pre-test heightened our awareness to the fact that we would need to think 
carefully about the terminology that we used when employing the randomization method. In 
addition, we would need to be mindful with the development of the chance alone explanation since 



none of the students were able to articulate this as a possible explanation for the observed 
difference.  
 
Pilot study teaching session 

Since seven of the students had not previously been exposed to designing comparative 
experiments, the first activity in the teaching session began with the instructor stating that she 
believed that some types of words were easier to recall than other types of words. By being careful 
to state that she was using a convenience sample of volunteers, that is, the pilot study students, she 
then explained that in order to investigate her hunch she wished to carry out a memory test. Her 
plan was that each student (which included the research observers) would be allocated to one of 
two groups, one of which would be given a list of words of one type to memorize, and the other to 
be given a list of words of another type to memorize. She then suggested that everyone over the 
age of 18 would be put into the first group, while everyone under the age of 18 would be put into 
the second group. At the outset nobody disputed this suggestion, which surprised us. Once 
challenged by the instructor as to whether or not there were any problems with her plan, a few 
suggestions were made such as “… the groups are not representative of the population…”, “… not 
enough people…”, and “… the numbers won’t be even…”. Having dealt with these suggestions, 
and with no comments on bias forthcoming, the instructor then continued by asking the students to 
consider males being given a list of words of one type to memorize, and females being given a list 
of words of the other type to memorize. Very quickly, someone mentioned that there would be 
bias, and that a comparison between the number of words recalled between each group would not 
be fair. Finally one student stated that there would need to be random assignment to each group so 
that a fair comparison could be made. A link was then made to the original approach of allocating 
students to each group on the basis of their age, and students appeared to realize that it would not 
be reasonable. We were surprised that nobody was critical of the original plan given their responses 
to the pre-test. 

The second activity involved an example designed to demonstrate statistical argumentation 
in action in everyday life (Vickers, 2010). We conjectured that by using an everyday example as 
the basis for our argumentation, and by encouraging the students to link future examples back to a 
readily identifiable context, students might find the statistical reasoning process and in particular 
the nature of the indirect argument more logical. The everyday activity described a situation 
involving a father and his daughter, and their daily battles with tooth brushing. Alice is told to go 
and brush her teeth. She disappears into the bathroom, the tap runs, and she returns several minutes 
later stating that she has brushed her teeth. The plausibility of Alice’s claim is tested by her father 
retrieving and examining her toothbrush. The following scenarios are then considered: (1) the 
toothbrush is dry and (2) the toothbrush is wet. The processes of argumentation aligned with each 
of these scenarios are shown in Figure 2. 

 Scenario One Scenario Two 

1. Statement to test. She has brushed her teeth. She has brushed her teeth. 

2. Collect data (information). The toothbrush is dry. The toothbrush is wet. 

3. Consider 1. and the data: 
If 1. is true, then what are the 
chances of getting data like 
that in 2.? 

The toothbrush-is-dry would be 
highly unlikely if she had brushed 
her teeth. 

The toothbrush-is-wet would 
NOT be surprising if she had 
brushed her teeth. 

4. Review the statement in 1.  in 
light of 3. together with the 
data in 2. 

Therefore, it’s a fairly safe bet she 
has not brushed her teeth. 
I have evidence that she has not 
brushed her teeth. 

Therefore, she could have 
brushed her teeth. Or she could 
have just run the brush under the 
tap. 
I have no evidence that she has 
NOT brushed her teeth. 

Figure 2: Development of everyday argumentation 



When Scenario Two was described to the pilot study students, they were quick to suggest 
that a wet toothbrush was not definitive evidence of Alice having brushed her teeth. A widely-held 
misconception, that no evidence against the null model (i.e. the statement being tested, that Alice 
did brush her teeth) provides evidence in favor of the null model, has been widely documented 
(Cohen, 1994; Falk & Greenbaum, 1995; Haller & Krauss, 2002). We conjectured that use of this 
everyday example, and the readiness with which students were able to think of alternative 
explanations for a wet toothbrush, might allay some of those misconceptions.  

The argumentation process was then considered in a more probabilistic situation, the third 
activity, although one to which students could easily relate (Eckert, 1994). With a pack of cards in 
hand, the instructor asked “What are the chances of drawing a red card from this pack?” Assuming 
a fair pack of cards, the students were certain that the chances of drawing a red card were ½, that in 
10 draws (with replacement) they would expect to get approximately five red cards, but that they 
were not guaranteed to get exactly five red cards in every draw of ten cards. Their assumption that 
it was a fair pack of cards, that is, the chances of drawing a red card from the pack was 0.5, was 
then tested. One volunteer chose ten cards at random, with replacement, from the pack of cards and 
it was noted that each card drawn was black. When the seventh and eighth black cards were drawn, 
the students started asking if there were any red cards in the pack at all, a sign that they were 
skeptical of their initial assumption that it was a fair pack of cards (p = 0.5). After all ten cards 
were drawn, all of which were black, the students were asked if they thought that pack was fair. 
They emphatically stated no, the pack of cards was not fair. They acknowledged that one could 
draw ten black cards from a fair pack, but that it was highly improbable. When asked for how 
many red cards they would want to see in order to accept that the pack was fair, one student 
answered “… at least one…”, while another answered “… three to six…”. Discussion then turned 
to the distribution of outcomes that one might expect if the process of drawing ten cards from the 
pack, with replacement, was carried out many times. The students acknowledged that possible 
outcomes (i.e. the number of red cards in ten draws with replacement) would range from zero to 
ten, that five would be the most likely outcome, and that outcomes on either side of five would 
become less likely as they moved away from five. An image of the distribution of outcomes was 
co-constructed with the students. When the observed outcome of zero red cards was marked on the 
distribution of outcomes, students could see that although not impossible, it was a highly unlikely 
result.  They also noted that one red card was “…kind of unusual…”, but appreciated that it was 
less unusual than no red cards, and that anything between three and seven red cards would not be 
unusual. We hoped that this intuitive argument with an unusual result displayed within a 
distribution would assist students when faced with drawing a conclusion from the re-randomization 
distribution. But, as Rossman (2008) observed, students seem to have no difficulty following the 
argument with a direct probability situation but do when encountering hypothesis testing. 

The fourth activity, the randomization part of the teaching session, then followed, and 
involved a simplified version of an actual experiment that was designed to investigate whether a 
program of special exercises for 12 minutes per day could speed up the process of learning to walk 
(Zelazo, Zelazo, & Kolb, 1972). Experimental data from two of the study groups, Exercise and 
Control, is displayed in Figure 3 with a red arrow indicating the difference between the measures 
of center for the Exercise group and the Control group. In this instance, the measure of center is 
taken as the median. However, it is also possible to use the mean as the measure of center. 

 

 
Figure 3: Plot of experimental data. X-axis is walking age in months. 

 
Two possible explanations for the observed difference of 2.25 months in the medians of 

the walking ages were discussed with the students: chance alone factors and both chance factors 
and the treatment factor. The randomization method was presented to the students as a method that 



allows us to experience the nature and extent of the variability we might expect to see when chance 
is acting alone, which we can then compare with what we see in our observed data.  

A hands-on version of the randomization method was introduced at this stage. By giving 
students hands-on experience, Holcomb, Chance, Rossman, Tietjen, & Cobb (2010) suggest that 
students can progress to the next level of the inferential argument by having these hands-on 
scenarios repeated via software. In pairs, the students were presented with ten tickets representing 
the five babies in the Exercise group and the five babies in the Control group and manually plotted 
the data seen in Figure 3. Under chance alone, we were interested in experiencing what sorts of 
differences we might expect to see in the measures of center of walking age for the Exercise group 
and the Control group. This was achieved by randomly reassigning the babies to each group. The 
tickets were split, effectively breaking the link between group membership and walking age. The 
group membership tickets and the walking age tickets were then shuffled, and the first observation 
under chance alone was obtained by randomly selecting one ticket from each pile. This process, 
which we call re-randomization, was repeated until all of the tickets were used up. The resulting 
data were then plotted, and the difference between the measures of center calculated. This was 
done several times by each pair of students, with students then collating their data as in Figure 4. 

 

 
Figure 4: Plot of 15 re-randomizations. X-axis is the difference in median walking ages in months. 

 
The students were then presented with a software demonstration, which reiterated the 

hands-on process, but was able to repeat the re-randomization process many more times. 
Development of suitable specialized software was a crucial consideration. The software was 
designed as a teaching tool and an analysis tool, and was required to mimic the hands-on process to 
allow for an extension to the intuitive logic provided by the hands-on experience. Figure 5 shows 
an example of an early version of the dynamic visualization tools which were used in the pilot 
study (http://www.stat.auckland.ac.nz/~wild/VIT/). In the top section of the graphics panel note the 
experimental data, with box plots demonstrating walking ages for both the Control group and the 
Exercise group. This is the same plot as in Figure 3 with the observed difference in medians of 2.25 
months indicated by a red arrow. By choosing Re-randomization (Idea) from the control panel, the 
data from both groups is combined, and then each walking age is re-allocated at random to a 
treatment group. This process of re-randomization mimics the hands-on ticket-tearing activity. 
Note the results from one re-randomization in the middle section. Each re-randomization difference 
in the medians can be captured in the bottom section of the graphics panel, allowing a distribution 
of up to 1000 such differences to be built. The tail proportion, representing the fraction of these 
1000 re-randomizations producing a difference in group medians at least as big as the observed 
difference of 2.25 months, is indicated on this distribution. We then discussed with the students the 
conclusion they would make and related it to the Alice story framework Scenario One. Our choice 
to begin by introducing an example with a small tail proportion was in part due to the suggestion 
that starting with an example with a large tail proportion might “reinforce students’ natural 
inclinations to regard a non-small p-value as evidence in support of the null model, rather than a 
lack of evidence against the null model” (Holcomb, et al, 2010, p. 4). 

 
 
 
 
 
 
 
 



Control panel 
 

Data panel 
 

Graphics panel 
 

 

 

 
 

 
   

Figure 5: Software panels for performing re-randomization process 
 
The fifth activity involved data from the same walking age study, although this time a 

comparison was made between the Exercise group and another group. This comparison resulted in 
an observed difference of 1.4 months, corresponding to a tail proportion of approximately 15%. 
We discussed with the students how we would interpret this tail proportion including stating that: 
Chance could be acting alone, or the special exercise program could be effective. We cannot say, 
either way. Note a relatively large tail proportion does not lead us to accepting the chance alone 
explanation as the only explanation. Our aim was to minimize the possibility of introducing this 
common misconception. We hoped that the Alice story framework, where tooth brushing was not 
the only explanation for a wet toothbrush, would provide further reinforcement to the concept that 
lack of evidence against the tested explanation does not confirm that explanation. 

Throughout the entire teaching session, great care was taken with the terminology used. 
Since the term randomization is often used to describe randomness in the data production, and 
therefore can indicate either random allocation to groups or random sampling from a population, 
re-randomization was the term given to the process of random re-assignment of units to one of the 
groups. Issues associated with the use of language when applying the randomization method have 
been published elsewhere (Pfannkuch, et al., 2011). 

  
Pilot study post-test 

One week after the teaching session, the pilot study students returned for a written post-
test, an interview and a task session. With regard to the randomization method, the same questions 
that were asked in the pre-test were asked in the post-test. However, there were some new 
questions in the post-test that we hoped would shed some insight into students’ understanding of 
the randomization process. 

There was no increase in the number of correct responses to the question concerning the 
purpose of randomly assigning the 14 male volunteers to one of the two groups, a finding similar to 
delMas et al. (2007), albeit with a very small sample. This would appear to confirm our belief that 
language is very important, and that confusion in the interpretation of random allocation to groups, 
random sampling from populations and randomization methods exists. However, our questioning 
of students upheld our original impression that most students who answered incorrectly still 
appreciated the motivation for random assignment.  

With regard to identifying two main possible explanations for the observed difference in 
blood pressure reduction between the regular oil group and the fish oil group, all students claimed 



that one explanation would be that the treatment was effective. Furthermore, seven students were 
able to articulate a chance alone explanation to some extent. This is evident in both their written 
and verbal responses, with comments such as: 

S2: Chance may or may not be acting on the reduction in blood pressure 
S3: That the fish oil diet group was made up of people who were more likely to have 

their blood pressure reduced for whatever reason 
S4: Chance is acting alone. The observed data has resulted in the way it has by chance 

Hence a fundamental element of the inference argument seems to be included in these students’ 
reasoning. All but one of the students were able to state that the researchers in the Fish Oil and 
Blood Pressure study would have been surprised to see a result such as the observed difference in 
group medians if chance was acting alone. Most of these students made reference to the tail 
proportion as part of their argument. Compared to Liu and Thompson’s (2009) findings, these 
students seem to have a conception of unusualness in a distribution, which we attribute to the 
software always displaying the tail proportion as part of a distribution, never as a numerical value 
on its own. 

Figure 6 shows two additional questions asked in the post-test. Question 15 was aimed at 
finding out the scope of the conclusions that the students were prepared to accept. We, perhaps 
unrealistically, expected the students to break the claim down and restate it so that it was 
statistically correct. However, some students did not respond in the way we envisaged, and as a 
result this question has been modified for the main study. Seven students noted that the claim 
generalized the findings to people, commenting that only males, and/or only those with high blood 
pressure, were studied. For example: 

S5: The research was conducted on men and there is a possibility that women may react 
differently to fish oil consumption 

S6: ‘People’ is too general. As the participants were all male with high blood pressure 
only inference about this particular group can be made 

None considered stating on average as a way of dealing with the fact that not all males would 
lower their blood pressure. There was a general uneasiness with accepting what students felt was 
the definitive aspect of the statement outlined in Question 15. “How would you rewrite it? (I) It is 
possible … (S1).” Even after having taken into account the over-generalizing feature of the 
statement by acknowledging that inference can only be made about males with high blood 
pressure, students were still uncomfortable with the word can. We speculate that this may be 
attributed to the tendency to qualify all statements with a degree of ambiguity, which Biehler 
(2011, p. 3) suggested meant nothing in terms of learning about students’ statistical reasoning, 
since “all our knowledge is uncertain.” 

 

 

Figure 6: Pilot study post-test questions, Questions 15 and 16 

We were interested in the responses to Question 16 (Figure 6), particularly in light of the 
common misconception that a large p-value is taken as evidence in favor of the chance-alone 
explanation. There was a range of responses such as: 

S1: Further investigation is required 
S7: The result is higher than 10%, showing that it is likely that chance is acting alone 

[incorrect] 
S8: They cannot conclude anything, it means that there’s no evidence against chance 

acting alone and that maybe some other factors could be acting along with chance 
[correct] 



During the teaching session, a guideline had been given for assessing chance acting alone. The 
guideline suggested that if the tail proportion was less than 10%, we had evidence against chance 
acting alone. Perhaps not surprisingly, students had the tendency to grab onto 10% and use it as a 
rigid cutpoint. One student had the idea that the tail proportion was a measure of how effective fish 
oil was, with a proportion in the region of 50% indicating that fish oil was definitely not useful, a 
proportion of around 27% indicating that fish oil may be useful, and that a tail of 10% indicating 
that fish oil may or may not be useful. Although not probed at the time, we anticipate that her 
answer to a tail proportion of 1% would be to state that the fish oil was definitely useful. Such a 
misconception has been consistently documented for hypothesis testing (Falk & Greenbaum, 
1995). Interpretation of a large tail proportion and the indirect nature of the logic of the argument 
seems to remain a problem with this method as it was with normal-based inference (Falk & 
Greenbaum, 1995; Nickerson, 2004; Liu & Thompson, 2009). We attribute this problem partially 
to the fact students only had about two hours tuition and we did not successfully link in the 
Scenario Two everyday argumentation (Figure 2). Even though we use this type of argumentation 
in everyday life, we think the argumentation will continue to remain difficult as it appears to be an 
alien way of reasoning (Thompson, Liu, & Saldanha, 2007) particularly when overlaid with chance 
alone, the re-randomization distribution of differences in means, and tail proportion ideas. 
 
Pilot study post-task 

The purpose of the post-task interview was to find out how the students handled the 
software, whether they understood the dynamic visualization representations, the hands-on 
components of the activities, and the language used and whether further issues could be identified 
in their reasoning. Pairs of students were given a written scenario to consider. They were asked to 
instruct the interviewer how to tackle the research problem described in the scenario. The research 
question was “Does added calcium intake reduce blood pressure?” The scenario described data that 
had been obtained from a randomized experiment designed to establish whether or not an increase 
in calcium intake was associated with a reduction in blood pressure. The students were required to 
enter the data into a file, import it into the software package and to analyze it such that the research 
question would be answered. 

All students were able to use the software competently. Of the five student-pairs, three had 
initial problems entering the data which was not a software problem rather a data structure 
problem. However, all were able to correct themselves with minimal input from the interviewers. 
All students correctly interpreted the red arrow (see Figure 3) as the difference between the 
measures of center for the two groups being compared and understood what the re-randomization 
distribution represented. The dominance of the visual distribution in students’ thinking was noted 
particularly in the bootstrap method scenario (not reported in this paper), which led us to refine the 
software to use a fainter color and fade option for the distribution so that visually students’ 
attention was drawn to the observed value, the tail proportion and its relationship to the 
distribution. Noteworthy was a comment made by the student who had studied statistics at the stage 
3 level – “now I understand what a p-value is” –reinforcing our view that presenting the tail 
proportion as part of a distribution assists learning. 

When quizzed on the effectiveness of the hands-on activities that formed part of the 
randomization teaching sequence, one student noted: “… having something that you can do and 
something you can visually see with the graphs, I thought that was really useful”. One student-pair 
described the connection they made between ripping up the pieces of paper in the Walking Babies 
example with the automated reassignment of blood pressure reductions in the dynamic 
visualizations. Another student remarked: “the randomization experiment (mixing the various 
pieces of paper) was very straightforward and left no room for confusion.” 

Five students were asked if they considered the line of argumentation associated with the 
toothbrush story an effective analogy. All five agreed, mentioning that it was a readily identifiable 
situation, and that everyone brushes their teeth. However one student noted that she was able to 
understand the story when the toothbrush was dry, but was confused as to the conclusions to make 
when the toothbrush was wet, which reinforced our view that we did not successfully link this story 
to the no evidence against chance conclusion. The concept of ‘no evidence against chance’ appears 
to be especially problematic for students. When the toothbrush is wet in the Alice story, we 



conjecture that ‘I have no evidence that she has NOT brushed her teeth’ should perhaps be restated 
as ‘I don’t know if she has brushed her teeth’. 

Again the language we used manifested itself as problematic in several areas. One area was 
students’ understanding of what chance is acting alone means. Several students were unable to 
articulate their understanding of what it means for chance to be acting alone. It may be that they 
have grasped the concept, but were unable to express their thoughts. One pair of students described 
chance as “…it just so happened…”, and then stated that randomization was used to “… 
confidently be able to say there is no chance that chance had any effect on the results”. When 
questioned on the hands-on activities that formed part of the randomization teaching sequence, 
another pair of students understood the ticket-tearing procedure as “…creating chance.” Since the 
idea that chance is acting alone is a central concept in the randomization method, we were 
concerned about the students’ difficulties with this notion. Consequently new software, designed to 
illustrate chance is acting alone unencumbered by experimental data, has been developed. 

Another problematic area was the reluctance to state a causal relationship between calcium 
intake and reduced blood pressure. One pair of students, in finding a tail proportion less than 10%, 
chose to say that there was “…likely…” a difference in blood pressure reduction between the 
calcium and control groups. It was unclear whether they said “…likely…” because they were 
hesitant to give a strong confirmatory response, or whether they felt that there was still a chance 
that what they observed in the data was not the truth. Such reasoning is understandable given that 
the observed difference could be that rare occurrence.  

Two further issues that arose in their reasoning were identified in the post-test as well. 
There was a general tendency for students to use the 10% guideline as a strict cut-off, with 
statements such as “The decrease in (the) calcium group was lower than the placebo, so …because 
it’s less than 10% … it doesn’t happen by chance.” Also interpreting a large tail proportion was 
difficult for students. Given a tail proportion of 40%, one pair of students stated “…there’s a pretty 
good chance that … calcium doesn’t necessarily reduce blood pressure…”, while another pair, 
given a tail proportion of 27% concluded that “chance is acting”. Thus it would appear that 
misconceptions associated with interpreting no evidence against a chance explanation as if it were 
evidence in favor of a chance explanation is an issue that we need to address. 
 
CONCLUSION 

Experience from the pilot study has been invaluable. The purpose of the pilot study was to 
detect problems in the pre and post-tests, learning trajectories and software before trialing the 
randomization method with over 3000 students. The wording in some pre and post-test questions 
was changed, such as the wording in Question 15 (Figure 6), to better reflect the type of response 
we were anticipating. With respect to the dynamic visualizations for inference, students seem to 
understand its components and what each was representing. In particular they were able to state 
what the re-randomization distribution represented with none thinking it was the data distribution 
(cf. Gould, Davis, Patel, & Esfandiari, 2010) although we did have a very small sample of students. 
From the students’ comments the prior hands-on activities, which were closely aligned to the 
dynamic visualizations, were a major element in helping them understand them. Furthermore, 
showing the observed difference and consequent tail proportion as part of the re-randomization 
distribution seemed to help the students conceptualize the probability of obtaining the observed 
difference or greater under chance alone (cf. Liu & Thompson, 2009). Therefore the technology 
coupled with the hands-on activity seemed to be essential for their understanding of the 
randomization method. 

The dynamic visualizations, however, need to be accompanied by verbalizations and 
language that help students to reason and argue from the simulated data. The students’ difficulties 
with arguing with a large tail proportion to draw a conclusion and with interpreting a tail 
proportion, the same problems identified by other researchers (Nickerson, 2004; Liu & Thompson, 
2009), challenges us to find a better way to assist students in this form of argumentation. In fact, 
after much reflection we have modified the learning trajectory so that the two explanations for an 
observed difference are not defined in the manner of a null and alternative hypothesis. We realized 
we should break with this traditional way of thinking and present the whole argument in a more 



natural format. Also we intend to make better connections to the Alice story framework in order to 
reinforce students’ understanding of the logic of the indirect argument.  

The randomization method and our dynamic visualizations are not a panacea for making 
inferential or hypothesis testing reasoning readily accessible to students. We believe, however, 
from this pilot study, that more underpinning concepts such as mimicking the data production 
process, chance is acting alone, the tail proportion and the re-randomization distribution are more 
accessible and transparent to students. In particular, the dynamic visualizations allowed students to 
view the process of re-randomization as it developed and grew into a distribution, giving students 
direct access to the behavior of the chance alone  phenomenon (Sacristan et al., 2010). Compared 
to the mathematical procedures of hypothesis testing, we believe the pilot study students did learn 
more about statistical inference using the randomization method (cf. Tintle et al., 2011). 
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