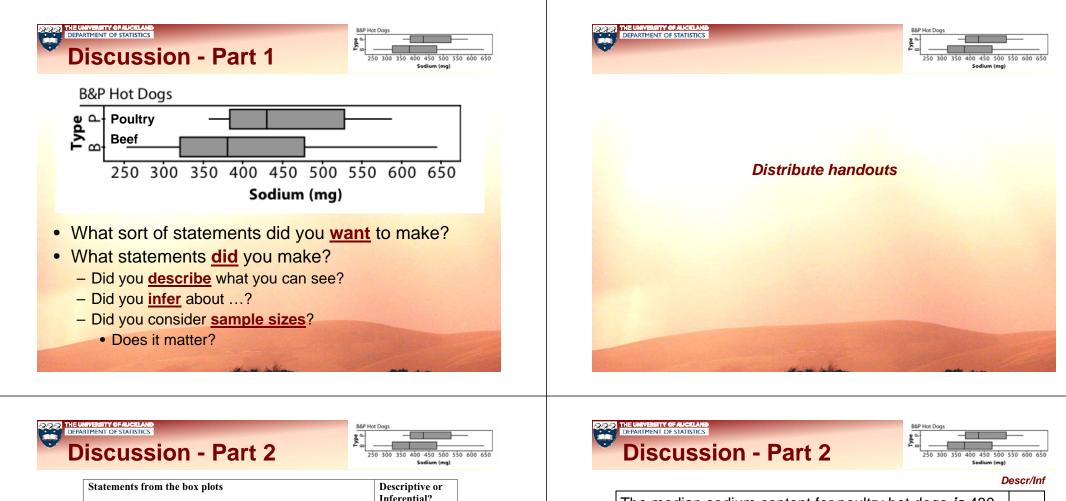
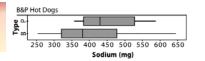

NATIONAL NUMERACY CONFERENCE 16 - 19 February 2009 DEPARTMENT OF STATISTICS


Building Inferential Reasoning in Statistics

Chris Wild and Maxine Pfannkuch Dept of Statistics, University of Auckland New Zealand

• Discuss in pairs what statements you would make from these plots.


	Inferential?	
The median sodium content for poultry hot dogs is 430 mg, almost		
50mg more than the median sodium content for beef hot dogs		
The medians indicate that a typical value for the sodium content		
of poultry hot dogs is greater than a typical value for beef hot dogs		
The range for the beef hot dogs is 392 mg, versus 231 mg for the		
poultry hot dogs		
The ranges indicate that, overall, there is more spread (variation)		
in the sodium content of beef hot dogs than poultry hot dogs		
The IOBs for sodium content are 1575 mg for heaf hat dags and		

- The investigators made statements from the plots.
 - Note for beef hot dogs n=20, for poultry n=17
- In pairs decide whether each statement is descriptive or inferential (see handout)

De	escr/Inf
The median sodium content for poultry hot dogs <i>is</i> 430 mg, almost 50mg more than the median sodium content for beef hot dogs	D
The medians <i>indicate</i> that a typical value for the sodium content of poultry hot dogs is greater than a typical value for beef hot dogs	T
The range for <i>the</i> beef hot dogs <i>is</i> 392 mg, versus 231 mg for <i>the</i> poultry hot dogs	D
The ranges <i>indicate</i> that, overall, there is more spread (variation) in the sodium content of beef hot dogs than poultry hot dogs	I

DEPARTMENT OF AUCKLAN

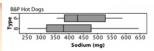
Discussion - Part 2

Statement

- Considering the degree of variation in the data and the amount of overlap in the box plots, a difference of 50 mg between the medians is not really that large
- What is this statement about?
 - Practical importance?
 - Is it an intuitive t-test?

Discussion - Part 3

- Considering sample sizes? Sampling variability?
- Can we expect students to make such a statement?
 - Under what circumstances?


DEPARTMENT OF AUCILAND

88P Hot Dogs 250 300 350 400 450 500 550 600 6 Sodium (mg)

In pairs discuss the following questions (see handout).

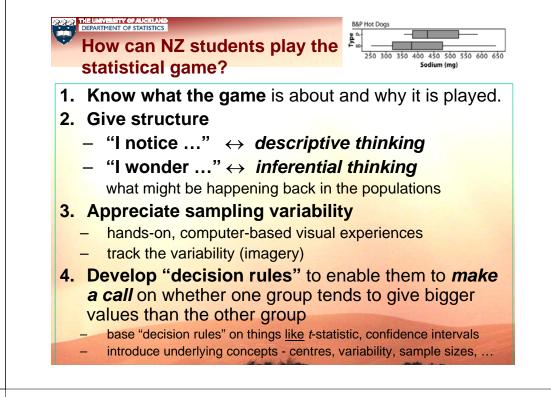
- What statistical game is played in the Year 11 NZ classroom (NCEA Level 1 – pose a question ...?)
 - Is the question about the data collected or is the purpose of the question to make a decision about some wider universe?
 - If Year 11 NZ students posed a question such as "Do poultry hot dogs tend to have a higher sodium content level than beef hot dogs?", on what basis would your students make a decision?
 - Are Year 11 NZ students aware of concepts such as sample, population, sample distribution, population distribution, sampling variability?

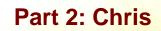
Department of statistics Discussion - Part 2

- What is the point of the hot dog comparison?
 - To describe?
 - To "infer"?
 - To draw a conclusion, make a decision?
 - To "do a comparison" ?

THE UNIVERSITY OF AUCTUAND DEPARTMENT OF STATISTICS Should students be doing inference?

- Research
- Everyday life (political polls etc.)
- If not, all rather pointless
- Therefore must provide a learning pathway
 - to introduce some of the "big ideas" behind inference
 - to allow students to
 "conceive of samples and sampling
 - in ways that support their developing coherent understandings of why statisticians have such confidence in this practice" (Saldanha & Thompson, 2002, p. 268).


DEPARTMENT OF ALCELAN


THE UNIVERSITY OF AUCKLAN

What is the statistical game?

- Statistics is about making decisions in the face of uncertainty
- Statistical inference

"moves beyond the data in hand to draw conclusions about some wider universe, taking into account that variation is everywhere and the conclusions are uncertain" (Moore, 2004)

On Informal Statistical Inference

