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Reclaim & reform probability learning 

Anne Patel, September 2019 

The language of probability 

When Nate Silver (fivethirtyeight.com) predicted Donald Trump had a 30% 

chance of winning the 2017 US election, people assumed he wouldn’t win, 

this underscores the problem of reasoning about probability. Change the 

chance situation and the language to, how surprised would you be if you 

tossed two coins and both came up tails? Hopefully, not that surprised. This 

event has a 25% chance of happening, even less than Trump winning! So, 

should we have been surprised that Trump won? Did Nate Silver “get it 

wrong”? (RNZ interview with Dr Dillon Mayhew) 

We can assign probabilities based on assumptions, by looking at the sky, 

and thinking about the season and what the weather was like yesterday, I 

predict there is a 10% chance of rain today, or we can estimate probabilities 

from data. Language connectors describe chance events in relation to 

others, such as “not”, “at least” and “and”. By describing, interpreting and 

representing chance events in general situations, using proportions, 

students learn how to use the language of chance and about ambiguities in 

the use of the word “or”. 

 12 out of 25 or 48% of students do not have a pet. 

 At least half of the students brought their lunch to school today. 

 64% of students use a bus or car to get to school. 

 Am I safer to walk to school or go in the car? 

 What is the probability a student chosen at random walks or takes a 

car to school? 

Older student’s need to consider situations involving two or three stages of 

chance experiments with more than one variable, using language such as 

“if”, “given”, “of”, “knowing that” through estimating probabilities from data 

in everyday situations. Statistical words likely to have different everyday 

meanings for students, such as, random = weird and sample = tester, and 

opportunities must be given to allow the students to use statistical language 

correctly. This includes establishing that risk has the same meaning as 

probability or proportion. Distinguishing between relative and absolute risk 

is fundamental to reason with probabilities in data. Exploring these 

situations involves awareness of common mistakes interpreting language 

about chance and leads to investigating independence without any formal 

definitions. (See amsi.org.au). 
 

  

https://fivethirtyeight.com/
https://www.rnz.co.nz/audio/player?audio_id=201780420
http://amsi.org.au/teacher_modules/Chance_year_9.html#Some_general_comments_and_links_from_K-8_and_towards_year_10


2 
 

Probability diagrams 

Probability is a measure, like length or area or weight or height, but a 

measure of the likeliness or chance of possibilities in some situation. 

Probability is a relative measure; it is a measure of chance relative to 

the other possibilities of the situation. Therefore, it is very important to 

be clear about the situation being considered. Comparisons of 

probabilities − which are equal, which are not, how much bigger or 

smaller − are therefore also of interest in modelling chance. 

(amsi.org.au) 

Hence, representing probabilities by areas or lengths (relative frequencies) 

optimises relational probabilistic reasoning, that encourages both a “sense 

of the problem” and correct language use when posing and answering 
questions arising in chance situations. The plots and tables were produced 

using 2019 CensusAtSchool data 

https://tabulator.docker.stat.auckland.ac.nz/ 

 

 
 

http://amsi.org.au/teacher_modules/Chance_year10.html#Assumed_background_from_1%E2%88%929
CensusAtSchool
https://tabulator.docker.stat.auckland.ac.nz/
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 What is the probability a student walked or biked to school? 
Approximately 22% + 6% = 28% (P(W) + P(B) = P(W B) 
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 Given you are male, what is the probability you have green eyes? 

P(G|M) = 1006/10454 = 0.0962) Notice the symbolic language is 
reversed in the question. 

 

 If you have green eyes, what is the probability you are male? P(M|G) 

= 1006/2379 = 0.4229 

 

Eikosograms use areas to reflect geometry in probability (see R.W Oldford, 

2018).Their construction divides the unit square into: 

 vertical bars with widths equalling the probabilities for each value of 

the conditioning variables(s), 
 and then divides each vertical bar horizontally into 

o rectangles with heights equal to the conditional probabilities of 

each value of the response variate given the value(s) of the 

conditioning variable(s). 

Therefore, the area of every rectangle equals the joint probability of the 

corresponding values of the conditioning and response variates. 

Consider the example of admissions to the Berkley graduate program R.W 

Oldford, (2018) uses.  

 
 Males are more likely (59%) to apply to Berkley than females (41%) 

 Berkley receives 59% of it’s applications from males and 49% from 

females 

 If you are male there is a 45% chance of being accepted to Berkley 

 If you are female there is a 30% chance of being accepted to Berkley 

 You are 15% more likely to be accepted to Berkley if you are male? 

 Being accepted to Berkley is affected by your gender. 

 Being accepted to Berkley is conditional on your gender. 

The power of the eikosogram is that the geometry reflects the probabilities 

of discrete random variables, when counts are superimposed on the 
eikosograms they also reflect data in tables, thus students can view and 

use multiple representations to reason about probability. 

https://cran.r-project.org/web/packages/eikosograms/vignettes/Introduction.html
https://cran.r-project.org/web/packages/eikosograms/vignettes/Introduction.html
https://cran.r-project.org/web/packages/eikosograms/vignettes/Introduction.html
https://cran.r-project.org/web/packages/eikosograms/vignettes/Introduction.html
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 the vertical axis shows the values of the response variable 

 the horizontal axis shows the values of the conditioning variable(s) 
 each axis ranges from 0 to 1 

 total probability is 1, the area of the whole  

 widths of rectangles are marginal probabilities 

 heights of rectangles are conditional probabilities 

 areas of rectangles are joint probabilities 

joint=area=height×width=conditional×marginal 

 the width of an entire vertical bar is the area of that bar (since its height 

is 1) and is also the sum of the areas of the rectangles it contains 

 the width of an entire vertical bar is the therefore the marginal 

probability for that value of the (horizontal) conditioning variable 

Also, using eikosograms, probability comparisons and independence are 
easily visualised. 

 

Two random variables X and Y are distributed independently of one another 

if their corresponding eikosgram is flat. (See Eikosograms to teach 

conditional and joint probability & Visualising chance.) 

Visualisations using lengths and areas with extensive student experience of 

single event and conditioning language, may result in clearer understanding 

of what probabilities are used for, i.e. making decisions, calculating risk, 

exploring and interpreting data, and for underpinning statistical thinking 

and methods, including models for probability and data.  

Order of teaching 

Introduce conditional probability BEFORE independence, because ALL 

probabilities are conditional. Helen MacGilliveray (ICOTS11) advocates 

banning the term ‘multiplication rule’ instead realising P(A and B) = 

P(A|B)P(B) because we always multiply the probabilities of more than one 

event. We define independence as P(A | B) = P(A). Ross Parsonage writes: 

https://new.censusatschool.org.nz/resource/using-the-eikosogram-to-teach-conditional-and-joint-probability/
https://new.censusatschool.org.nz/resource/using-the-eikosogram-to-teach-conditional-and-joint-probability/
https://new.censusatschool.org.nz/resource/visualising-chance-a-pilot-study-at-the-introductory-level-senior-secondarytertiary/
https://iase-web.org/icots/10/proceedings/pdfs/ICOTS10_Keynote_MacGillivray.pdf?1533464968
https://new.censusatschool.org.nz/resource/probability-activities/
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 When second stage events are not independent of the first stage 

event the multiplication of probabilities is justified by P(A and B) = 

P(A | B) x P(B).  

 When second stage events are independent of the first stage event 

the multiplication is justified by P(A and B) = P(A) x P(B) for 

independent events. 

When calculating a probability of an outcome using a probability tree, there 

is a danger that students will multiply the probabilities on the branches 

without giving due consideration to the reasons why. The notation of events 

in the second stage should be labelled as conditional events when the 

second stage events are not independent of the first stage event.  

When constructing a table from a story, which gives proportions or 

percentages in categories (rather than counts or frequencies), it is 

recommended that a table of counts is constructed rather than a table of 

proportions. Research has shown that information in a table of counts is 

more readily understood than information in a table of proportions. It is 

suggested that a large and easy-to-use number (such as 1000, 10 000, 

100 000 or 1 000 000) is used as the sample size. This number does not 

need to relate to the size of any underlying population. 

Multiple representations 

When learning any concept, reasoning about multiple representations 

results in better coherence and integration. Venn diagrams for events are 

potentially misleading. Thus, calculate probabilities using two-way tables 

supplemented by Venn diagrams to allow students alternative reasoning 

and visualisation about chance events and how they interact. Consider the 

following problem with the table and diagram together providing reasoning 

about the formulas. 

Given that P(A) = 0.35, P(B) = 0.45 and P(A Ո B) = 0.13 

 Find (a) P(A U B) = P(A) +P(B) – P(A Ո B) (b) P(A’ | B’) = 
𝑃 (𝐴’ Ո 𝐵’)

𝑃(𝐵′)
 

   = 0.35 + 0.45 – 0.13      = 
0.33

0.55
 

   = 0.67        =0.6 

 

 

Event B B’ Total 

A 0.13 0.22 0.35 

A’ 0.32 0.33 0.65 

Total 0.45 0.55 1 
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Visualising chance distributions 

Noticing and wondering about randomness and features of distributions 

seen in multiple simulations is paramount to developing concepts of chance 

in data (see Konold & Kazak, 2008). This requires the use of simulations 

using technology, such as TinkerPlots. Technology allows us to appreciate 

the phenomenon, of increased stability in chance distributions over 

increasing numbers of trials, known as the Law of Large Numbers. 

Moreover, visualise sample variation based on random events, not available 

through manual tossing of coins or other physical tools of chance. 

In two or more step chance experiments student need to assign 

probabilities to outcomes in situations involving selections either with or 

without replacement. There are different ways of assigning probabilities, 

NOT different types of probabilities.  

 

 Estimate  

 Model      Combination of any of these 

 Belief  

Statistics educators are urged to incorporate probability as part of statistical 

investigation cycles (PPDAC) and models, see Randomness and Chance 

activities, Data Analysis and Modeling Activities and A models and Modelling 

approach. Dalrymple and Grant propose drawing students attention to 

common concepts in statistics and probability such as variation, distribution 

and sampling variation in learning experiences concerning based on chance 

seen in data. These experiences ensure students are aware of the chance 

in data and the data in chance.  

 

Visualising and reasoning about Randomness 

Humans find it difficult to identify randomness and random events, we just 

don’t “see it” in our daily lives, and if we do, we are likely to assign a cause, 

other than randomness, to the event. Therefore, it falls to statistics 

teachers to make the invisible visible. Students need experience visualising 

and reasoning about randomness every year, at least three times a year. 

Two activities that stimulate and expose students to randomness and 

human bias and follow on effects for sample selection. These indicate the 

need to randomly select samples as much as possible in the sampling 

process.  

From: Rouncefield, M & Holmes, P., (1989) Practical Statistics. Macmillan 

Education Ltd: London. McIntyre, R. 

 

http://www.tinkerplots.com/activities/randomness-and-chance-activities
http://www.tinkerplots.com/activities/randomness-and-chance-activities
http://www.tinkerplots.com/activities/randomness-and-chance-activities
http://www.tinkerplots.com/activities/data-analysis-and-modeling-activities
https://new.censusatschool.org.nz/resource/a-models-and-modelling-approach/
https://new.censusatschool.org.nz/resource/a-models-and-modelling-approach/
https://new.censusatschool.org.nz/resource/junior-probability-planning-to-learn/
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From: G. Noether, Teaching Statistics at its best. (1994) pp40. 

Mental random numbers: Perceived and real randomness  

 

Ask students to write down five random selections from the digits 1,2 and 

3. To analyse the data, we are only interested in the last two digits they 

wrote. (The first three help get into the swing of things and tapping a pencil 

on the desk for timing can help.) 

 

The table gives the frequencies of nine possible outcomes of 450 students. 

Second digit 

F
irs

t d
ig

it 

 1 2 3 Totals 

1 31 72 60 163 

2 57 27 63 147 

3 53 58 29 140 

Totals 141 157 152 450 

  

Assuming the students were randomly writing down numbers, the nine 

combinations are equally likely, each having probability  
1

3
×

1

3
=  

1

9
  

Expected frequencies for each cell then equal 50. Visual inspection tells us 

that the observed frequencies for 1,1 and 2,2 3,3 are smaller than expected 

under conditions of true randomness, while the frequencies for the non-

identical digit pairs are too large. Interestingly, in spite of the lack of 

independence of successive digit selection, the marginal totals for both the 

first and second digits do not exhibit any significant deviations from 

theoretical frequencies. These can be confirmed by appropriate chi-square 

tests.  

 

Data are everywhere 

It falls to teachers of statistic to educate future citizens about the census 

and the use of census data. One of the easiest ways to do this is for students 

to take part in CensusAtSchool. By collecting measures themselves, 

students become aware of variation in measures. Through exploring the 

data, using data analysis or probabilities, students are aware of the 
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assumptions and limitations behand data. For example, the 2005 data 

revealed a surprising amount of people with short arms, and 100 people 

out of a 1000 who did not answer the question! That’s 10% of the sample! 

Does it matter? 

 

 

  

The good news is the armspan data from CensusAtSchool 2015 look a lot 

more normal with less missing data, so students (and their teachers) must 

be taking measurement data and non-response issues more seriously!  
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Building models  

 

When students build models based on real data, the aim is for students to 

go further than reading behind the data to investigating beneath the data 

in order to understand that random events are ubiquitous and to develop 

an appreciation of what randomness looks like, how it behaves, and how 

its effects might begin to be quantified when making statistical inferences. 

(Patel & Pfannkuch, 2020). Technology such as the TinkerPlots Sampler 

enables students to model real world situations. See A models and 

modelling approach. 

Examining a random sample of 147 Year 7 and 8 students bag weights in 

the Otago region (CAS 2015) lead to the construction of a model of the 

situation. 

Real data: n=147    Conditional Model constructed by Year 8 student 

  

Simulated data: n=32   Simulated data: n=145   Simulated data: n=10000 

https://new.censusatschool.org.nz/resource/a-models-and-modelling-approach/
https://new.censusatschool.org.nz/resource/a-models-and-modelling-approach/
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Notice that in the small simulated sample n=32 the means are larger for 

males and smaller for females, by chance alone. Can we be sure there is a 

difference of nearly 1kg in the bag weights of males and female Year 7 and 

8 students in the Otago region? 

What are the factors the student considered cause bag weight? Are they all 

accounted for? Can we trust the model results? 


