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The basis for most inferential procedures is the idea of a sampling distribution. Computer 

simulation lets students gain experience with and intuition for this concept. The bootstrap can 

reinforce that learning. While today the bootstrap belongs to the toolkit of any professional 

statistician, its vast pedagogical potential is still in the process of being discovered. We discuss 

several bootstrap methods to compute confidence intervals from a teaching perspective. 

 

INTRODUCTION 

Confidence intervals are a tough concept for an introductory statistics course. The 

frequentist interpretation states that (100- )% confidence interval characterizes a process for 

generating intervals with the following property: when the process is repeated several times, (100-

)% of the generated intervals contain the true but unknown parameter. In most introductory 

courses the usual treatment of confidence intervals often begins with a sampling distribution of a 

statistic, like the sample mean. From the sampling distribution, one argues that 95% of the time the 

sample mean  will fall between where SE is the standard error of as the estimator 

of the population mean μ. Through some simple algebraic manipulations, we obtain the random 

interval .  

 With the availability of cheap and flexible computing power, simulation based Monte-Carlo 

methods have gained increasing importance in probability and statistics. They are a very powerful 

tool for problem solving as well as an excellent device for visualization to support the learning 

process of students. Mathematically based on the law of large number and conceptually on a 

frequentist notion of probability virtually any probability problem can be solved approximately 

through simulations. While only providing rough solutions, simulation methods can be applied 

even in highly complex situations that may be too intricate for an analytical treatment. Thus 

simulations in statistics allow for testing the understanding, for confronting misconceptions, and 

for supporting valid intuitions in an experimental and exploratory approach to learning. In 

simulations we substitute a real random situation by a hypothetical experiment, which is a model 

for the original one but can easily be manipulated and analyzed. Computer-supported interactive 

simulation helps to build simplified models, where irrelevant features are disregarded, and the 

phenomena are condensed in time and akin to students’ experience. Formal mathematics is reduced 

to a minimum, allowing students to explore underlying concepts and experiment with varying set-

ups (Batanero, Biehler, Engel, Maxara & Vogel, 2004). 

Figure 1 shows 50 simulated 90% confidence intervals for a proportion. Based on a sample 

of B(1, p) distributed data x1, …, xn, we computed 50 confidence intervals. The population 

parameter p is represented through the vertical line. As we can see, in 5 of the 50 simulations the 

calculated interval misses the true parameter. This is an example of a “probabilistic” simulation, 

with samples generated from a known underlying distribution. 

 

RESAMPLING AND THE BOOTSTRAP 

Contrary to above example, in statistical practice as well as in data-oriented introductory 

statistics courses, the underlying distribution is unknown and all that is available are the data. If the 

population, represented through a probability distribution and its parameters is no longer available, 

what can we do? The basic idea is simple: if we can’t sample from the population, we sample from 

the best approximation to this population we got: the observed data itself. The bootstrap idea is to 

take (re-)samples , drawn with replacement from the original sample x1, …, xn. In other 

words: If we don’t know the distribution function F our original sample was drawn from, then we 

generate new samples from the empirical distribution function  . 
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Figure 1. 50 simulated confidence intervals for a proportion, true value represented by straight line 

 

The bootstrap is a prime example of synergy between technology and content that can be 

taught naturally within the paradigms of modern theories of learning. It has the potential to make 

central ideas of inferential statistics like the concept of a confidence interval more accessible to 

learners than the classical approach based on theoretical distributions. Furthermore, it provides a 

way to estimate parameters, approximate a sampling distribution or derive confidence intervals 

when we have data but do not know the underlying distribution. The bootstrap also frees us from 

the requirement to teach inference only for statistics for which simple formulas are available or 

accessible to our students. 

Once students are familiar with simulation, especially with simulated sampling from a 

known population, it is fairly easy to introduce the idea of resampling. It is important to 

differentiate between simulated sampling from a population and resampling from a sample. These 

are different operations. However, what one gets out is a distribution, either a simulated sampling 

distribution or a resampling distribution, of possible values for a sample statistic. 

When the true sampling distribution is unavailable, inference can be based on the bootstrap 

distribution. Any quantity of interest , that is not available because of the unknown sampling 

distribution of, can be computed from the just generated bootstrap distribution, e.g. bias, standard 

error or confidence intervals. 

Besides enabling the introductory student to use modern methods of statistics and adding a 

flexible and versatile instrument to his or her data analysis toolkit, the bootstrap is also very 

instructive from a learner’s perspective. The core concept of inferential statistics is the idea of a 

sampling distribution. Resampling–like any other simulation method–allows the learner to 

experience how a statistic varies from sample to sample and–with increasing number of resamples–

how an (empirical) sampling distribution evolves. Therefore, from a perspective of statistics 

education, the bootstrap is much more than just a tool useful in sophisticated situations. It is an 

instrument to visualize and explore basic concepts of statistical inference. When applying 

simulation, the novice experiences how the values of the sample statistic vary from sample to 

sample and how the sampling distribution evolves over time with increasing number of sample or 

resample observations. Simulation and bootstrapping offer a way for teaching statistics and 

probability by using the computer in order to gain direct experience and direct understanding 

through graphics. While the concept of an an underlying distribution is abstract, even beginners use 

histograms to visualize the distribution of a data set (Hesterberg, 1998). 

 

BOOTSTRAP CONFIDENCE INTERVALS 

Once students are introduced to simulation and resampling, it is a straightforward step to 

estimate quantities of interest of the not available true sampling distribution by the corresponding 

quantity of the bootstrap distribution, e.g., standard error, bias, standard deviation. Concerning 
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confidence intervals, the situation is a bit more complicated. A variety of different concepts have 

been proposed (see, e.g. Davison and Hinkeley 1997 or DiCiccio and Efron, 1996) for producing 

approximate confidence intervals. With  denoting the c percentile of the bootstrap distribution 

three rather elementary concepts are: 

 

- bootstrap percentile interval: In order to construct a confidence interval for a parameter  we 

need to know how  as an estimator of  varies in repeated sampling from the population. 

Since all the information we have about the population is contained in the sample, bootstrap 

methods treat the sample as if it were the population. The (100- )% bootstrap percentile 

interval contains the middle (100- )% of the bootstrap distribution taking the /2 and (100-

/2) percentile of the bootstrap distribution as interval endpoints: . 

- basic bootstrap interval: To create a 100-  confidence interval for a parameter  based on a 

sample estimate , we determine the distance that we plausible expect  to fall from  at the 

% level. If we knew critical values c1 and c2 such that then we 

could rearrange the inequalities as follows  to produce a 

(100- )% confidence interval for . As we don’t know the distribution of  (or of ) and 

their percentiles, we take the corresponding percentiles of the bootstrap distribution. Under the 

assumption that the percentiles of the sampling distribution and the bootstrap distribution are 

very close, we obtain  

 

resulting in  

- bootstrap-t interval: similar to the standard normal case the interval is constructed according to 

where SEBoot is the standard error of the estimator , estimated from the 

bootstrap distribution. 

 

More sophisticated approaches to obtain bootstrap confidence interval include the bias-

corrected and accelerated method (BCa intervals), the approximate bootstrap confidence intervals 

(ABC intervals) and bootstrap tilting. All these methods are asymptotically superior to those 

mentioned above and are implemented in the bootstrap package of the software R. Detailed 

description and precise comparison of the various concepts can be found in the literature, e.g., 

DiCiccio and Efron (1996) or Efron. 

 

AN ACTIVITY-BASED EXAMPLE 

An elementary, yet instructive and not trivial example suitable to demonstrate many facets 

of important statistical concepts is the estimation of animal abundance based on the capture-

recapture method: Ideas on how to implement this experiment in an activity-based learning 

environment can be found, e.g., in Scheaffer et al. (1996) and Engel (2000). In its paradigmatic 

version it is about estimating the number of fish in a lake. A number m of fish is caught, marked 

(the capture), released back into the lake and after a while a sample (the recapture) of n fish is 

taken. Let the number of marked fish in the recapture–a random quantity–be denoted by k. Then a 

reasonable estimate for the population size N in the lake is 

 

Based on a one-time data collection the quality of this estimate is difficult to evaluate. A 

repeat of the experiment will most likely lead to a different estimate for the population size. In a 

probability-based simulation set-up we could repeat this experiment many times over to obtain an 

(approximate) sampling distribution for . As a statistics problem the “lake” (or in a more 

abstract notion the theoretical distribution on the random variable ) is not available. All we have 
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to rely on are the data at hand, i.e. the sample or recapture of size n. These data–if drawn by some 

random mechanism–may well be taken as a good representation of the total fish population. 

Implementing the bootstrap idea, we therefore consider samples (=resamples) drawn from the best 

approximation to the population we may have: the sample. 

1. Draw a sample (re-sample or bootstrap sample) of size n with replacement from the 

original sample and count the number of marked elements in that resample. 

2. Compute (bootstrap estimator)

3. Repeat step 1 and 2 many times over to obtain the (empirical) bootstrap distribution of 

, represented e.g. as a histogram. This distribution – the bootstrap distribution – is the proxy to 

the unknown sampling distribution of . 

Example 1: In the simulation experiment described above we “marked” m = 80 fishes and 

caught a sample of n = 60 animals of which k = 13 had a marker leading to an estimate for the 

population size of 80  60/13  369. Relying on the available sample of size 60, we resampled 

repeatedly 500 times to obtain the bootstrap distribution of  as displayed in Figure 2 obtaining 

a 95% percentile confidence interval of [240; 600] by cutting off 2.5% from both tails.
(1) 

For the 

basic bootstrap interval we obtain [138, 498] while the bootstrap-t interval is [211, 522] 

Furthermore, it is easy to compute the standard error as the standard deviation of the bootstrap 

distribution to obtain a value of 78.68. Also, an estimate for the bias of  can be computed as 

difference between the average of the bootstrap distribution and the estimate of  in the original 

sample: 321.058  240 = 81.058
(2)

. 

 

It is instructive to consider how modern software allows implementing the bootstrap. The 

histogram in Figure 2 has been created with the educational statistics package Fathom.  

 
 

Figure 2. Bootstrap distribution of the estimated population size: 

Implementation in Fathom (left) and histogram (right) 

 

WHEN DOES BOOTSTRAP WORK: AN ISSUE FOR TEACHING? 

The bootstrap may be an instructive, very useful and intuitively reasonable algorithm, but 

does the method really produce reasonable results? Part of the enthusiasm about the bootstrap 

method was founded on the misunderstanding that mathematics (as the basis in classical inference) 

is replaced by mere computing power. 
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Sound statistical inference is based on the sampling distribution of , but 

with the bootstrap we infer from . To achieve valid conclusions requires that these 

two distributions are close to each other, at least in some asymptotic sense. Hence, we need a 

continuity argument to guarantee that the bootstrap is more then a “stab in the dark” (Young 1994). 

To formalize, we have to show that these two distributions–appropriately normalized–

converge to the same limiting distribution. For broad classes of situations this can be proven 

mathematically, but requires highly advanced methods whose foundation is the theory of empirical 

processes and their convergence (see, e.g., Hall, 1992; Mammen, 1992). 

In order to exhibit the required convergence, we resort to the previous example of the 

capture-recapture estimate. The distribution of marked elements in the resample is a typical case of 

a hypergeometric distribution 

 

while for the Bootstrap distribution of marked elements in the resample we have (drawing 

with n elements from the resample, where k out of n elements are marked) 

Now it is straightforward that both distributions, appropriately normalized, converge to the 

same limit as with . 

It is instructive to consider elementary examples where the bootstrap method fails. 

Consider the ”Frankfurt Taxi Problem” (A. Engel, 1987): in Frankfurt taxis are presumably 

numbered from 1 to N. After arriving at the train station you observe n taxi cabs numbered by 

. The maximum likelihood estimate for the total number of taxis N is 

. It is straightforward to show that the distribution of  is 

exponential with parameter which implies in particular that – as for any continuous 

distribution – the value 0 is assumed with zero probability. 

The bootstrap distribution for  is the distribution of , 

where  for some . We obtain a value of 0 with that probability for which the 

element xi is being resampled. However, it is well known (compare the “rencontre problem”) that 

this probability converges towards 1 1 e, hence not towards the value 0 provided by the 

exponential distribution. 

 

5 SUMMARY 

It is well known that the concept of confidence intervals is hard for students to grasp. 

Computer simulation lets students gain experience with and intuition for these concepts. The 

bootstrap provides a prominent opportunity to enhance that learning in view of genuine statistical 

reasoning, i.e., in situations where we have data but do not know the underlying distribution. 

For the mathematical statistician the bootstrap is a highly advanced procedure whose 

consistency is based on the convergence of empirical processes, for users of statistics it is mainly a 

simulation method and an algorithm. For a sound understanding and appropriate handling any user 

should be aware that random and chance enter at two distinct points: in the Plug-In step by 

considering the distribution of the sampling statistics under in place of the distribution F
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resulting in the bootstrap distribution and in the Monte-Carlo step by obtaining an empirical 

approximation to the exact bootstrap distribution. There are situations that allow to compute the 

exact bootstrap distribution, i.e., then the Monte Carlo step is not needed. In the vast majority of 

situations the bootstrap distribution is not tractable analytically. Then simulation from the 

empirical distribution yields an empirical approximation to the bootstrap distribution. This 

approximation can be made arbitrarily close by increasing the bootstrap sample size, given the 

availability of sufficient computing power. In contrast, the asymptotic equivalence of the bootstrap 

distribution and original distribution of the sampling statistic is far from being trivial and is based 

on convergence results for empirical processes. 

A great deal of research efforts on learning and instruction over the last decades focuses on 

how to take advantage of modern technology to support learning. The availability of modern 

technology also influences the content of teaching considered valuable and worthwhile. Moore 

(1997) speaks of synergy effects between technology, content and new pedagogy. Working with 

technology may influence qualitatively the thinking of learners about mathematics. New content 

reflects the computer-intensive practice of modern statistics. The bootstrap is a prime example for 

synergy between technology, content and new insights into the learning process. The method is 

based on a conceptually simple idea that is generally very useful and instructive. Without available 

cheap computing power the bootstrap is not feasible. As for any simulations in probability and 

statistics, the bootstrap can be implemented in an activity-based, exploratory and experimental 

learning environment. While the method in its first three decades has been mainly a very useful 

method for the expert data analyst, time has come to take advantage of its great potential to 

enhance learning of concepts in inferential statistics. 

 

NOTES 

(1) Based on the hypergeometric distribution for the number k of marked elements, it is here 

possible to compute the exact 95% confidence intervals of [218; 480] while a probability 

simulation (based on the total population) resulted in a 95% confidence interval of [228; 485]. 

(2) The true population size in the simulation example is N=310. 
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