

Statistical Informal _ Inference Revisited

Dept of Statistics, University of Auckland New Zealand

DEPARTMENT OF AUCKLAN

"Informal statistical inference"

 important new element of the new curriculum

What is it?

- plain old statistical inference, but ...
 - operated simply enough for young students

The ideas in this talk have developed

through a long series of brainstorming sessions about informal inference with:

Maxine Pfannkuch Matt Regan U. of Auckland, NZ

Nick Horton Smith College, MA, USA

"Informal statistical inference"

We will ...

- Start with the big ideas of statistical inference
- Describe simple methods for students to apply when looking at their own data
 - Minimise steps that lead students to take their eyes off the data
 - "Exploit the power of the visual sense"

DEPARTMENT OF AUCKLAND

How did they travel to school?

How did they travel to school ?

How did they travel to school ?

THE UNIVERSITY OF AUCILAND DEPARIMENT OF STATISTICS

Comparing heights of boys and girls at age 12

Comparing heights of boys and girls at age 12

Comparing heights of boys and girls at age 12

DEPARTMENT OF AUCKLAN

We will be concentrating on inference, but ...

To see the richness of the interplay between description and inference at work

see Handout 2 (on the website)

DEPARTMENT OF STATISTICS

Description versus **inference**

- **Description** is **what I see** in the data in hand
 - Theme: "*Right here, right now*" Fat Boy Slim
- Inference is what I think is likely to be happening back in the populations, back where these data came from
 - Theme: "Back in the USSR" Beatles

 Many unclear in their thinking & communication when they are describing and when inferring

Description theme

inference Theme

THE UNIVERSITY OF AUCKLANE DEPARTMENT OF STATISTICS

How do we make inferences?

- Often from coming to believe that something I see in *these* data is a reflection of something occurring back in the populations
- Always know that what we see is, at best, an *imperfect reflection* of the way it really is back in the populations

DEPARTMENT OF AUCKLAND

How did they travel to school?

Bar Chart Animations

Play

- Samples of 1000
- Samples of 200
- Samples of 100
- Samples of 50
- Samples of 30
- Samples of 30 without jitter

THE UNIVERSITY OF AUCKLANE DEPARTMENT OF STATISTICS

Quick Summary

- Description is what I see in the data in hand
- Inference is what I think is likely to be happening back in the populations, back where these data came from
- In this talk, we have concentrated on inference

DEPARTMENT OF AUCKLAN

Metaphor to set the stage for statistical inference

Looking at the world using data

is like looking through a window with ripples in the glass

"What I see ...

is not quite the way it really is"

DEPARTMENT OF AUCILAND

Quick Summary

- Sampling variation alone ...
 - can produce shifts in our box plots
 - Small shifts with big samples
 - Sometimes quite big shifts with small samples
- Makes no sense
 - to read meaning into shifts in data of a size often produced by sampling variation
- We have some rules for signalling when a shift
 - is *big enough* that we can make a call on what group gives bigger values

DEPARTMENT OF STATISTICS

Does the shift we see

look bigger than sampling variation would produce?

• The rules

- Take sample size into account
- Operated without taking the eyes off the data
- Get more sophisticated over time
 - Converging towards the tools of formal inference

DEPARTMENT OF STATISTICS Is the data shift big enough?

(for us to claim B bigger than A back in the populations)

Curriculum Level 5: the 3/4-1/2 rule

Majority of one to the right of "the great whack" of the other

Curriculum Level 6: distance between medians as proportion of "overall visible spread"

Curriculum Level 7: based on informal confidence intervals for the population median

Separation (no overlap) of constructed intervals

DEPARTMENT OF AUGULAN

If the shift is not big enough ...

- then we can't make a call .. on "who is bigger" back in the populations?
 - Simply don't have enough information
- Happens frequently when ...
 - the sample sizes are small
 - very little data (very ripply window)
 - differences between the populations are small (looking for fine details rather than gross discrepancies)

But these are subjects for another talk

